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ABSTRACT: We have applied the Thomas-Kuhn sum rules to model the wavelength dependence of the second-order nonlinear
polarizability of an amphiphilic porphyrin chromophore designed for cellular imaging on the basis of the complete analysis of its
linear absorption spectrum. We predict huge oscillations for this first hyperpolarizability in the biological transparency window
with the second-order response exhibiting three minima and two maxima in the wavelength range between 700 and 900 nm and
a second region of enhanced response between 1200 and 1500 nm. We confirmed the predicted values experimentally
demonstrating both the validity of our approach and the need for a wavelength scan to find a maximum in the resonance-
enhanced signal for cellular imaging. These results suggest a new approach toward achieving spectroscopic selectivity during
second-harmonic generation imaging.

■ INTRODUCTION
Second-harmonic imaging microscopy (SHIM) has been
established as a nondestructive imaging modality,1 which is
now widely being applied for both basic research and clinical
pathology. The second-harmonic generation from certain
membrane-bound dyes is highly sensitive to membrane

potential. SHIM is already applied as a valuable tool for

probing cell physiology, but the small signal amplitude limits
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the number of photons that can be collected during the course
of a fast action potential. One of the main challenges in this
field is hence the design of more efficient dyes to improve
signal-to-noise ratios while still maintaining biocompatibility.
SHIM dyes are exogenous chromophores that have a strong
two-photon resonance-enhanced nonlinearity in the biological
transparency window (700−900 nm) because of an electron
donor−acceptor charge-transfer band in the visible region. The
early SHIM dyes were one-dimensional conjugated π-systems,2

but the current state-of-the-art dyes include multidimensional
porphyrin- or carbazole-based chromophores.3,4 The donor-π-
acceptor porphyrins have strong oscillator strengths along the
long molecular axis while also possessing a significant off-
diagonal linear and nonlinear polarizability tensor component.
Different strategies have been applied to tune the absorption
bands to exploit resonance enhancement at different driving
frequencies.5 The transparency window of biological tissue lies
between 700 and 900 nm implying that the fundamental
wavelength of the incoming probing light should also be in this
window. A commercially available titanium3+-sapphire laser
has a tunable output wavelength exactly over this wavelength
range, which makes this one of the most used laser sources for
second-harmonic generation imaging.6 Porphyrins exhibit, in
addition to their typical Q bands to the red end of the visible
spectrum, a Soret absorption band (or B band) around 400 nm
inducing strong resonance enhanced nonlinearities when
illuminated with fundamental laser light originating in the
biotransparency window. To qualitatively guide research efforts
toward enhanced optical nonlinearities, the two-level model of
Oudar and Chemla7 has been traditionally used, where the
hyperpolarizability β is described in terms of the magnitude of
the dipole moments of the ground state (μ00) and a single
excited state (μ11), the difference in energy between the
ground-state E0 and this excited-state E1, and the interaction
between ground and excited state as described in the transition
dipole moment μ01

β μ μ
μ

∝ −
−E E

( )
( )11 00

01
2

1 0
2

(1)

This simplified expression for β has been used for many
years to explain the observed hyperpolarizability dispersion
mainly in terms of the resonance enhancement because of
the energy difference in the denominator. This transition
energy is directly related to the wavelength of maximal
linear (one-photon) absorption. For the simplest chromo-
phores, whose light-matter interaction is dominated by a
single-charge-transfer transition often in the visible region,
the more general sum-over-states (SOS) expression (eq 2)
indeed reduces this to a simple two-level model. However,
in trying to optimize the hyperpolarizability β, more com-
plex molecular architectures need to be considered. The
electronic interactions of these more complex chromo-
phores can no longer be described by the simple two-level
model as they are no longer dependent on only ground
and (first) excited states. Interactions between ground and
second, third, ... excited states as well as interactions
between excited states will play an important role. It has
been shown that the generation of a second-order nonlinear
optical (NLO) response requires a minimum of three
levels,8 and we will take into account more levels if this
proves to be beneficial for the accuracy of our modeling of
the linear absorption spectrum. Indeed, the success of our
modeling of the nonlinear response is strongly dependent
on the quality of the modeling of the linear absorption. We
use modeling of the linear absorption in combination with
the Thomas-Kuhn sum (TKS) rules to calculate the entire
β-spectrum, and we demonstrate large oscillations in first
hyperpolarizability over the spectral window relevant for
imaging of biological samples. These large oscillations can
cause important differences in the signal-to-noise ratio as a
function of actual near-infrared wavelength used. For
simple, single charge-transfer molecules, linear spectroscopy
has been used to successfully predict the nonlinear dis-
persion,9 but the inherent complexity of the chromophore

Figure 1. Chemical structure and extinction spectrum of chromophore 1 in CHCl3. The two Q-bands are clearly distinguishable (λmax(Q1) = 628
nm, λmax(Q2) = 705 nm) as is the broad Soret or B-band (λmax(B) = 436 nm), which will have to be modeled with at least two peaks because of the
shoulder around 375 nm.
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introduced by the porphyrin ring requires a somewhat
different treatment. We have already reported3 on the
apparent anomalous dispersion of the hyperpolarizability
of chromophore 1 (Figure 1). We had observed that the
hyperpolarizability is increased by a factor of 2 when
changing the fundamental wavelength from 800 to 840 nm.
We now further investigate the wavelength dependence of
the first hyperpolarizability of this chromophore and model
its linear and nonlinear optical spectra for comparison with
experimentally determined hyperpolarizabilities at more
fundamental wavelengths.

■ THEORY
Sum-Over-States. Our approach is to use the sum-over-

states (SOS) expression for the first hyperpolarizability,
which depends on the transition energies, the line widths of
these transitions, and the transition dipole moments between
ground and excited states, which can all be obtained from linear
absorption measurement. However, a hyperpolarizability
depends also on the transition dipole moments between
excited states, which we will calculate using the TKS rules.
This approach has already been introduced by Kuzyk10 and
has been worked out for a set of porphyrin chromophores
by Hu et al.11 Since we have observed that this modeling is
very sensitive to changes in the line widths, we decided not
to use the line width as a fitting parameter but rather to use
an averaged experimental line width to give our model more
physical robustness. The SOS expression for the diagonal
components of the second-order molecular polarizability for
the case of frequency doubling as derived by Orr and Ward12 is
given by
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where the prime after the sum indicates that the indices m, n
run only over the excited states and not over the ground state.
This expression is defined as a function of the transition dipole
moments μn0, which correspond to the transition dipole
moment between the ground state and the nth excited state;
the energy differences E0n, which correspond to the difference
in energy between the ground state and the nth excited state;
and the line widths Γn, which correspond to the line width of
the nth transition. Also, the bar operator has been introduced
such that
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Generalized Thomas-Kuhn Sum Rules. The evaluation
of eq 2 requires the evaluation of transition dipole moments
of the type μmn. These do not contribute to the linear
response and, hence, cannot be derived from the linear
absorption spectrum and will have to be calculated or

measured independently. Therefore, we need to find a
mechanism that allows us to calculate the transition dipole
moments μmn as a function of the transition dipole moments
μ0n. One possible approach would be to use computational
chemistry methods to calculate the wave function from the
molecular structure and then to evaluate the transition
dipole moments, a task that is far from trivial. Instead, we
use the generalized TKS rules to derive relationships
between the transition dipole moments following the
approach introduced by Kuzyk for the first time in the
calculation of the fundamental limits of the molecular
susceptibilities.13
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where N denotes the number of electrons of the system and
δkl is the Kronecker delta. The evaluation of the transition
dipole moments is possible by using the off-diagonal sum
rules, which are obtained by evaluating eq 4 with k ≠ l. The
number of equations to be solved can be calculated with

binomial coefficients, ⎜ ⎟⎛
⎝

⎞
⎠

n
k
. The number of excited states we

take into account plus the ground state gives us n, and since
by assumption the transition dipole moments are real, μij
must be equal to μji, and thus k = 2.

■ RESULTS
Modeling of the Extinction spectrum. The linear

optical properties were characterized with a Perkin-Elmer
UV-2001 spectrometer. The UV−vis spectra were converted
to molar extinction, ε (in units of M−1 cm−1) using the
Lambert−Beer law. The molar extinction spectrum of
chromophore 1 as a function of photon wavelength, λ, is
shown in Figure 1. The corresponding extinction spectrum as
a function of photon energy in eV is shown in Figure 2 (black
circles). The linear absorption spectra exhibits the typical Q-
bands that are associated with the porphyrin structure (with
D4h symmetry). These types of bands arise from the
transitions to orbitally degenerate excited states within the
porphyrin ring and are enhanced because of the incorpo-
ration of the ring into a donor−acceptor conjugated
structure.14,15 The addition of donor and acceptor groups
along the extended conjugated path results also in the
enhancement (and red shift) of the B-band, which results
from orbitally degenerate transitions between ground and
first exited states. Since the B-band arises from the coupling
of multiple charge transfer oscillators, the spectral envelope
is expected to be broader than for Q-bands because of the
overlapping of more close-lying transitions. This is indeed
the case for chromophore 1. The spectrum shows a total of
three broad absorption bands: a B-band (λmax

(1) = 436 nm) and
two Q-bands (λmax

(2) = 628 nm, λmax
(3) = 705 nm). However, a

minimum of four peaks is necessary to model the extinction
spectrum (Figure 2).
It is important to realize that to get reliable results from the

sum rules, we must be sure that the variables we use to
calculate them are reliable. Therefore, we must check that the
information we obtain out of the linear extinction is physically
correct. We must model the peaks sufficiently accurately to
reproduce the experimental extinction profile. For this reason,
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although our computational limit lies at four excited states, we
must model the extinction spectrum with an additional fifth
and very broad feature to account for the slowly rising tail at
the high-energy end. This tail, however, is not taken into
account in the modeling of the hyperpolarizability because we
assume that the behavior of the first hyperpolarizability is
dominated by the contributions of the first four excited states:
their contributions are resonantly enhanced for the range of
fundamental wavelengths used to characterize the first
hyperpolarizability. The extinction spectrum is fitted with
Gaussian peaks because the dominating broadening effect in
solution gives rise to absorption bands with a mainly Gaussian
profile.
The energy difference between the ith excited state and

the ground state, Ei0 (in eV), is now easily obtained from the
values of the wavelength of maximum absorption for each peak
(in nm)

λ
=E

1240
i i0

max
( )

(5)

Also, when the peak in the molar extinction spectrum can
be distinguished from the other peaks, the area under the
peak can be related to the corresponding (dressed) oscillator
strength16−18
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where ε(i) is expressed in units of M−1 cm−1 and |μi0*| is in
Debye.
The line widths are obtained directly from the fits to the

extinction peaks and are defined as the half width at
half-maximum (HWHM) of the ith transition. For our
modeling, we use the average of the line widths we have thus
obtained. The experimental parameters obtained are listed in
Table 1.

Experimental Hyperpolarizability Measurements. All
experimental hyperpolarizabilities of chromophore 1 were
determined by hyper-Rayleigh scattering19,20 in CHCl3 at
different tunable setups. Measurements at fundamental
infrared wavelengths of 1240, 1300, 1320, 1340, and 1500
nm were carried out on a tunable femtosecond Hyper-Rayleigh
Scattering (HRS) setup. This setup uses a diode laser to pump
a titanium-sapphire laser (Spectra-Physics, model Tsunami)
and an optical parametric oscillator (OPO) (Spectra-Physics
OPAL) tunable in the infrared region. Measurements at
fundamental near-infrared wavelengths of 800 and 840 nm
were carried out at a simplified version of this setup, which was
previously described.21 All experimental hyperpolarizabilities
are reported in Table 2. To discriminate between the immediate
nonlinear scattering and the time-delayed multiphoton fluo-
rescence, we use high-frequency demodulation technique.21−23

The earlier reported hyperpolarizability3 at a fundamental

Table 1. Parameters Describing the Linear (One-Photon)
Absorption of Chromophore 1a

i
Ei0
(eV)

λmax
(nm)b

λmax
(nm)c

∫ 0
∞ε(i)(E)
dE |μ0i| (D) Γi (eV)

1 1.75 709 705 7651 6.324 0.0727
2 1.98 626 628 7603 5.922 0.0998
3 2.84 437 436 37 326 10.948 0.2094
4 3.28 378 ca. 375 4166 3.407 0.1445
5d 4.47 277 / 48 429 9.947 0.7909

aThe linear behavior was modeled with four significant peaks for the
four dominant transitions. bThe wavelength of maximum absorbance
is directly calculated out of the transition energy of the modeled peak.
cThe wavelength of maximum absorbance is determined out of the
experimental spectrum. dThe fifth peak is considered to contain all
other transitions and is therefore modeled with a Gaussian broad band,
and its data are in italics because they are not taken into account for
the modeling.

Figure 2. Extinction spectrum of chromophore 1 (derived from the spectrum in Figure 1). The spectrum is modeled with five Gaussian peaks. The
Q-bands are very straightforward, whereas the B-band needs a minimum of two peaks to be resolved. The broad high energy contribution to the
spectrum is fitted with one Gaussian broad band.
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wavelength of 1064 nm was obtained on a nanosecond Nd:YAG

laser system, such that the high-frequency demodulation

technique cannot be applied, and it is thus impossible to exclude

any fluorescence contribution to this signal. Since we cannot rule

out fluorescence for this value, we did not take it further into

account in this analysis.
We notice that, in principle, because the first hyper-

polarizabilities are complex quantities, one should be careful

when extrapolating the diagonal component of the first

hyperpolarizability βzzz from the experimentally determined

orientational averaged hyperpolarizability squared ⟨βHRS
2 ⟩.24 For

polar molecules with C∞v symmetry where the diagonal

component βzzz is much larger than βzxx, such as the molecule

considered in our study, a simple relationship is derived

assuming Kleinman symmetry

β β⟨ ⟩ = 6
35 zzzHRS

2 2

(7)

Although we are aware that Kleinman symmetry is only valid

away from resonances, for consistency, we have taken the

values obtained through hyper-Rayleigh scattering character-

ization to provide for the real part of βzzz through eq 7. While

other options are possible, our calculations show that the

approximation is valid at the wavelengths of measurement,

where the real part of βzzz dominates over the imaginary part,

and hence, eq 7 holds.
Hyperpolarizability Spectrum. Our objective is to apply

the SOS expression for the first hyperpolarizability (eq 2) using

only the results from the linear absorption characterization.

With the TKS rules (eq 4), we now have a tool to provide the

missing variables for the hyperpolarizability expression. We use

the off-diagonal sum rules to obtain the values of μmn as a

function of the values of μn0 (which are obtained from the

linear extinction). In our case, we model with four peaks, and

thus, we must truncate the sum rules at four excited states,

which gives us =
⎛
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Table 2. Experimental Hyperpolarizabilities

λ (nm) ℏω (eV) βzzz( ×10
−30 esu) δβzzz( ×10

−30 esu)

800 1.55 2500 300
840 1.48 6500 500
1240 1.00 500 100
1300 0.95 800 100
1320 0.94 1300 100
1340 0.93 1700 100
1500 0.83 <50a /

aThe value at 1500 nm was too small to measure, so an upper limit of
50 × 10−30 esu is given.
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These equations give rise to 64 sets of mathematically correct
solutions, real and imaginary, of which all the real sets should
be considered and checked against the experimental hyper-
polarizabilities. Only one of these sets of mathematical
solutions provides a hyperpolarizability spectrum that agrees
with the experimental data and is thus the physically correct
one. The results of the TKS rules are presented in Table 3.

The solution set with opposite sign is equally correct because
we always measure β2, and thus the sign is undetermined. To
check for the correct solution, we thus consider the absolute
value of the hyperpolarizability spectrum.
In the Beratan model,11 the line widths of all the peaks are

set equal to the same effective line width value, Γ, which is
treated as a fitting parameter, while the values of the transition
energies are allowed to be lower than the measured values
through the peaks on the linear absorption by a factor Sv ≤ 1.
Typical values for Sv are between 0.90 and 0.99. This energy
shift (lowering the measured energy from En0 to Sv·En0) is based
on the fact that the experimentally measured transition bands
might be peaked at energies above the electronic origin because
of the shape of the Franck−Condon envelope. In our approach,
we still use Sv as a fitting parameter, but we use the average
experimental line width obtained from our modeling of the
linear spectrum. In this way, because our modeling is
dependent on the line width, we achieve added robustness.
We assume that the behavior of the first hyperpolarizability is
dominated by the contributions of the first four excited states
since their contributions are resonantly enhanced for the range

of fundamental wavelengths used to characterize the first hyper-
polarizability. Therefore, we truncate the sum rules, including
up to the fourth excited state, because for the sake of simplicity,
we only solve the 10 equations corresponding to 4 excited
states.
As can be seen in Figure 3, the subtle electronic interplay

between the excited states comprising the B-band in the
absorption spectrum (around 400 nm) gives rise to strong
oscillations in the hyperpolarizability value when illuminated
with fundamental light around 800 nm. In fact, with oscillations
at a maximum of 775, 860, and 1400 nm, the hyper-
polarizability exhibits two maxima and three minima in barely
85 nm. While the spectral content for a femtosecond pulse is
broad (full width at half-maximum (fwhm) 20 nm), it is still
narrow with respect to the oscillatory features as shown in the
inset of Figure 3. Also, the Q-band envelope gives rise to the
smaller oscillations when illuminated with ∼1300 nm. Our
model predicts a minimum (zero crossing when considering
absolute value) at a fundamental wavelength of ∼1530 nm,
which was corroborated by the measurement at 1500 nm which
gave no measurable hyperpolarizability.

Conclusions and Perspectives. A strong oscillatory
wavelength dependence for the second-order nonlinear polar-
izability (first hyperpolarizability β) of a donor−acceptor
substituted porphyrin chromophore has been modeled on the
basis of its linear absorption and the Thomas-Kuhn sum rules.
Within the relative narrow wavelength range of the optical
transparency window (700−900 nm), extreme variation in the
first hyperpolarizability is modeled and experimentally verified.
The validity of the approach is corroborated by experimental
hyperpolarizabilities confirming the modeling in the near-
infrared beyond this transparency window (1240−1500 nm).
The important implication of this result is that the exact
fundamental wavelength for cellular imaging using this
membrane-specific probe has a primary effect on the signal-
to-noise ratio. A simple wavelength scan over the available
tuning range of the laser of choice, that is, a Ti-sapphire laser,
can suffice to maximize the signal. An intriguing perspective
is offered when considering that the transition energies,
determining the detailed spectral features of the wavelength

Table 3. Transition Dipole Moments μnm (Debye) between
Excited States Are Calculated through the Mathematica
Software

μij 0 1 2 3 4

0 μ00 μ01 μ02 μ03 μ04
1 μ10 −24.66 −5.204 −3.354 29.63
2 μ20 μ21 −9.881 −35.98 1.769
3 μ30 μ31 μ32 −0.525 7.548
4 μ40 μ41 μ42 μ34 −22.12

Figure 3. Calculated dispersion of the first hyperpolarizability of chromophore 1 (line) and experimental values (points) in the wavelength domain.
(Inset) Calculated hyperpolarizability (red) between 650 and 950 nm with the typical Gaussian spectral content of a femtosecond laser pulse (black)
from a Ti-sapphire laser.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp302050j | J. Phys. Chem. C 2012, 116, 13781−1378713786



dependence, are a function of the substitution on the porphyrin
ring. By using differently substituted porphyrins, the different
absorption spectra will give rise to different spectral features
for the nonlinear polarizability. Given the sharpness of these
features, the possibility emerges to spectrally select one imaging
probe by setting the fundamental wavelength to the zero
response of the other probe providing selective imaging of two
(or more) probes.
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