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Dedication

This book is dedicated to the large and small.

“The miracle of the appropriateness of the language of mathe-
matics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve,” – Eugene Wigner

i



ii DEDICATION



Contents

Dedication i

Preface v

1 Introduction 1

2 Classical Length 5

3 Single-Particle Length 9

4 Many-Particle Systems 11

4.1 Wave Functions . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Many-Particle Matrix Elements . . . . . . . . . . . . . 14

5 Quantum Length 17

6 Upper Bound of Length 19

7 Applications 23

7.1 Particle in a Box . . . . . . . . . . . . . . . . . . . . . 23
7.1.1 Fundamental Limit . . . . . . . . . . . . . . . . 23
7.1.2 Actual Quantum Length . . . . . . . . . . . . . 29
7.1.3 Electron Density . . . . . . . . . . . . . . . . . 31

7.2 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . 35
7.2.1 Length Limit . . . . . . . . . . . . . . . . . . . 37
7.2.2 Actual Quantum Length . . . . . . . . . . . . . 38
7.2.3 Electron Density . . . . . . . . . . . . . . . . . 39

8 Bosons 41

iii



iv CONTENTS

9 Coherent States 45

10 Discussion 49

10.1 Rulers . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2 Ruler Reliability . . . . . . . . . . . . . . . . . . . . . 52
10.3 Classical Versus Quantum Parsing . . . . . . . . . . . 53
10.4 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.5 Entanglement of Ruler and Object . . . . . . . . . . . 60

11 Conclusion 69

A The Sum Rules 73



Preface

This tiny book is based on a manuscript that I wrote on the topic of
size, which had trouble finding a good home. The work is not new
science, but rather a description of a very basic quantity in physics
that we have come to know as length. It’s a topic that might have
been discussed by early physicists; but perhaps not since length is
derived from the more general concept of coordinates. I have done my
due diligence in trying to find references to the quantum description
of length, but my searches are overwhelmed by more searched-for
quantities such as the Planck Length, the units for measuring length,
and pornography.

After obsessing over my manuscript for 3 years, making it longer,
then cutting it back to the barest of bones, then expanding it again
in several cycles, I decided with some trepidation that it was time
to submit it to American Journal of Physics. My reasoning was that
AJP publishes pedagogical papers that dive deeply into topics that
on the surface seem to have been fully understood by physicists. I
felt that my paper was of this sort, but the editor disagreed, asserting
that my exposition was more appropriate for a specialized journal.
I see nothing specialized about the topic and believe it to be of the
broadest interest to physicists. But I relented without complaint,
then decided to turn the manuscript into a book for self publication.
Perhaps in the end, this format will get greater exposure than a
physics journal.

I am concerned that this un-refereed book has errors, but I con-
vinced myself that the topic is of enough interest for me to be forgiven
for inaccuracies. If you find errors or have suggestions, please email
me at mgk.wsu@gmail.com or start a public discussion on my blog
at http://unknownphysicist.blogspot.com/. I intend to continue
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vi PREFACE

toying with length in my very small bursts of spare time, and to re-
lease future editions that both have more for the general audience
and the expert alike. For example, the fascinating history of counting
and measurement can easily be expanded. For the expert, I might
extend the book to talk about metrics, which I have totally ignored.
Hopefully, the deficiencies of this book will be outweighed solely by
the merits of the topic without the need for polished embellishment
by an author.

The gist of the book is as follows:

The size of an object is quantified by its characteristic dimensions,
which are determined from a set of length measurements. Such mea-
surements implicitly assume that objects are spatially confined and
that one-to-one correspondence connects each part of the object to
be measured with an interval on a ruler. We should question such
macroscopic reasoning when in the quantum realm.

Since size is typically considered a classical quantity, its quantum
definition is not commonly discussed, but essential in understanding
the basis of measurement. Here, the reader is led through the obvious
definition of length as the spread of the probability density, which
we evaluate in the noninteracting many-body approximation to solve
textbook examples. In the asymptotic limit of many electrons in an
infinite well potential, the result converges to sharp boundaries and
uniform density as we would expect of a classical system.

Bosons, however, are shown to behave in a counterintuitive way.
We spend our lives interacting with electrons, so it’s not surprising
that being unfettered from the shackles of Pauli Exclusion, bosons
are far less constrained and can do as they please.

In addition to the ground state, the length of excited states and
coherent states are discussed to glean the meaning of length of sys-
tems that cannot be characterized without invoking quantum prin-
ciples, yet can be interpreted classically.

A quantum ruler may appear to misbehave unless we carefully
rethink the meaning of a length measurement; the act of making finer
markings leads to systematic error that must be taken into account.
If left uncorrected, ever finer rulings lead to more accuracy until the
onset of quantum effects, resulting in an optimum parsing for making
the most precise ruler. Furthermore, greater accuracy as a result of
making finer rulings costs energy.

The effects of entanglement between the object and the ruler
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are also analyzed. Under certain circumstances, the act of measure-
ment causes electrons to be exchanged between the two, changing
the length of both the object and the ruler. In the most extreme
case, the ruler evaporates as a result of a measurement.

A consequence of the quantum definition of length is that quan-
tum principles can be used to set an upper bound of the object’s
length in terms of the ground to first excited state energy difference,
independent of the system’s Hamiltonian. In the classical limit, the
energy spectrum becomes continuous, thus allowing for arbitrarily
long length – a property that meets with our classical expectations.

Pedagogically, this line of reasoning shows that interesting physics
lurks behind the simplest concepts, which reveals subtleties about
measurement and illustrates how the many-particle limit converges
to the classical result.

I hope that my narrative is instructive, fun and leads to a better
understanding of many-particle quantum mechanics. The classical
limit is often associated with systems that are large or in high-energy
eigenstates. Here we will see situations where size does not matter
as much as the number of particles.

Enjoy!

Mark G. Kuzyk

Pullman, WA

July 2017
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Chapter 1

Introduction

Shepherds set out a stone for each sheep they let out to pasture and
removed it from the pile when they returned to make sure that none
of their flock went missing. Such simple counting systems undoubt-
edly were used in many aspects of life. The shepherd’s stones system
is an example of one-to-one correspondence – a stone for each sheep.
Counting with fingers and stones progressed to counting boards and
then the abacus, where beads on wires provided a bridge to more so-
phisticated systems of counting and computation.[1] More abstract
representations, such as numbers that are expressed in various bases,
are also rooted in one-to-one correspondence.[2] Arguably, one-to-one
correspondence is the foundation of science since it is the basis for
quantification.[3]

The fact that items can be counted is a critical assumption that
is not obvious and deserves further thought. The premise is that
physical objects have distinct boundaries. In everyday life, this as-
sumption appears to apply to what we think of as discrete objects.

Length is a construct that is based on one-to-one correspondence
for continuous things that are not easily separable but in principle
divisible. Several identical objects can build a ruler, where they are
laid end-to-end along the thing to be measured, the number of them
straddling it being the length; i.e. there is a one-to-one correspon-
dence between the ruler and the imaginary slices of the thing if it
were made of discrete units. Rather than using discrete rulers end-
to-end, one can use markings on a ruler to represent the end-to-end
objects. Alternatively, one can use the same ruler segment over and
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2 CHAPTER 1. INTRODUCTION

over, moving it sequentially by one length and counting the number
of repetitions required to span the object. Indeed, this was a method
of choice since earliest recorded times, and is the basis of the cubit,
defined by the distance between the tip of the middle finger and the
elbow. The ancient builder thus had a convenient portable ruler.[4]

One-to-one correspondence defines the process of addition, where
the number of objects is represented by tick marks on a counting stick
or knots in a counting rope, which can then be more compactly ex-
pressed by symbols. Multiplication is then defined by counting the
numbers of groups of numbers of objects, and so on. The more ab-
stract concept of volume is also in one-to-one correspondence with
the number of objects that fit inside it, connects with multiplication
and leads to integral calculus. The number of oscillations of a pe-
riodic system quantifies the passage of time; the time slices being
analogous to sections of a ruler with the “object” being the time
between events.

This connection between seemingly disparate things by their num-
bers is not obvious. The Thimshian language of a tribal people of
British Columbia have seven sets of distinct words for numbers that
apply to different kinds of objects.[5] There are number words for flat
objects and animals and others for round objets and time. Number
words for men are distinct from those that enumerate long objects
and trees. Counting canoes and measures also carry a distinct set
of number words. This redundancy implies a perceived underlying
difference between two sets with the same number of elements but
of a different kind.

The one-to-one correspondence between length and time is based
on the observation that an object can move so many intervals of
distance over this many clicks of a clock. Velocity quantifies the
correspondence between the two. Though the same set of number
words describes both time intervals and lengths, our language sep-
arates time and space by assigning them different units, implying
they are distinct things – a vestige of humanity’s pre-Einstein un-
derstanding of space-time. This one-to-one correspondence between
ever-more abstract quantities forms our more sophisticated present-
day understanding of the universe.

A measurement of length requires a correspondence between the
numbers of markings on a ruler and parts of the object, with the
implicit assumption that additivity of the units of each forms the
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whole. Now imagine making finer subdivisions. Our knowledge of
quantum mechanics teaches us that sharp boundaries disappear on
smaller scales, where wave functions take over as the descriptions
of stuff. The concept of separate units comes into question in the
quantum realm, where wave functions of identical particles are re-
quired to be entangled, and lose all essence of individuality. The
most universal theories that are formulated using human intuition
often spit back at us an accurate description of nature that rejects
the intuitive assumptions that went into formulating those theories.
We are thus compelled to accept this strange behavior, and use it to
develop a more abstract and nuanced intuition. So too is the concept
of length, which is well defined in the macroscopic world, which when
extrapolated into the quantum realm takes on a different meaning.

This book focuses on length and seeks to define a rigorous method
for computing it in the quantum limit using the classical everyday
description as a guide. A rigourous quantum definition of length can
be evaluated in the classical limit as a pedagogical tool to under-
standing how quantum effects fade away when many particles are
involved; and, perhaps more interestingly, quantum mechanics sets
constraints that must carry over into the classical world. For exam-
ple, there is a deep connection between length and energy spectrum.
This connection is made apparent with quantum-mechanical identi-
ties called sum rules, which set an upper limit for length in terms
of the energy difference between the two lowest-energy states and
the number of particles – typically electrons – that make up the sys-
tem. Length seemingly becomes boundless when energy separations
become small, as it does in the classical world.

Going by the classical definition, the only one known at the time,
the French National Assembly recognized in 1791 the importance
of a standard of length, and defined the standard meter to be one
ten-millionth the distance from the north pole to the equator on the
meridian passing through Paris. In 1799, a platinum bar was made
in France and placed in the National Archives, and later, duplicates
were made to be used as a standard in the United States and else-
where. In 1960, a more precise definition was established in terms
of the the number of wavelengths of light, then in 1983 in terms of
the distance traveled by light in vacuum in a tiny fraction of a sec-
ond. Ironically, all these definitions assume a classical length that is
known to break down for small objects. This book takes us into the
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quantum realm where these assumptions are scrutinized.
Chapter 2 starts with an intuitive argument for how we perceive

length, and these perceptions are used to define a more rigourous
definition of length that applies to the quantum realm. Chapter 3
then uses the length definition for a single particle in a quantum
well. Chapter 4 takes a small detour to define a convention of many-
particle state vectors and operators that is amenable to straight-
forwardly evaluating many-particle quantities. Chapter 5 shows how
the spread of the wave function of a single particle of a many-particle
state vector determines the length. With the quantum theory of
length established, Chapter 6 shows how the Thomas-Reich-Kuhn
sum rules,[6, 7, 8] purely quantum relationships between the posi-
tion matrix elements and the energies, set an upper bound on length
as a function of the number of electrons in the material and the
energy difference between the two lowest-energy states. Appendix
A derives the sum rules to provide the reader with a self-contained
document.

Chapter 7 applies the theories to many particles in a box and in
a harmonic potential. For each system, the fundamental limit is cal-
culated and verified by comparing it with calculations of the actual
length. The classical limit is then studied by extrapolating the quan-
tum expressions to many electrons, and the particle density in the
box is shown to approach the classical limit – having sharp bound-
aries and uniform density. Then the length of a system of Bosons is
analyzed in Chapter 8 showing that the upper bound of the ground
state length of an infinite well energy spectrum grows substantially
beyond the walls as bosons are added and no sharp boundaries are
ever observed. Also studied are the energies required to subdivide the
ruler into smaller sections and the accuracy of such rulers is analyzed.
Chapter 9 shows that the length of a coherent state is the width of the
wave packet rather than the approximate distance between classical
turning points, as are the energy eigenstates. Chapter 10 completes
the discussion by focusing on the meaning of measurement; and, how
a ruler will introduce systematic errors in the measured length. Also
discussed is the necessary entanglement of the measuring device and
the object and how it affects the measurement process. An extreme
case can be constructed in which the ruler evaporates in the process
of making a measurement. Chapter 11 summarizes it all and offers
points for further thought.



Chapter 2

Classical Length

A classical measurement of a length requires a comparison between a
standard, such as a ruler, and the extreme ends of the object. In the
small size limit, where quantum effects dominate, the measurement
is intrinsically fuzzy because an edge cannot be represented by a
single point. When such fuzziness becomes extreme, the classical
concept of length is nonsensical. Here we seek to define size in a way
that can be applied to the quantum realm and asymptotes to the
“correct” classical result for large familiar objects.

Classical systems are characterized by objects with uniform den-
sity and sharp boundaries whereas quantum system are described by
wavefunctions that oscillate. The quantum object is characterized
by the expectation value of the position, which gives its location;
and, the variance, which quantifies the spread of the wavefunction.
This spread is the uncertainty in the position of the particle(s) that
define the system. These concepts are quantified below.

Consider a classical rod of length L as shown in Figure 2.1a. If
it is uniform, in the spirit of quantum mechanics, we can define a
linear density amplitude

ψ(x) =
1√
L
, (2.1)

which is normalized, so
∫ L

0 |ψ(x)|2 dx = 1. Equation 2.1 can be used
to get the expectation of the position, a fancy name for its average

5
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a

L
L

y(x)y(x) = 1/L
1/2 |y(x)|

2

Classical Rod “Quantum” Rod

(a) (b)

Figure 2.1: (a) A classical rod can be represented by a uniform
density with sharp edges. (b) The ground state wavefunction of an
electron in a box has a probability density that is proportional to
the square of the wave fucntion.

position or midpoint, which yields

〈x〉 =
∫ L

0

dxx |ψ(x)|2 =
L

2
, (2.2)

a result that we expect; and,
〈

x2
〉

is given by

〈

x2
〉

=

∫ L

0

dxx2 |ψ(x)|2 =
L2

3
. (2.3)

We apply the quantum approach to determine the uncertainty in
the position of the classical rod, which with the help of Equations
2.2 and 2.3 gives

∆x =

√

〈x2〉 − 〈x〉2 =
L√
12
. (2.4)

We postulate that the quantum length is proportional to the uncer-
tainty, so to make it match the classical length, we define it to be of
the form

L =
√
12∆x =

√

12
(

〈x2〉 − 〈x〉2
)

. (2.5)

We can test this definition by checking if the length of a quantum
system asymptotes to the expected length in the classical limit when
the number of particles becomes large.
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The length along x in agnostic form,

L =

√

12

∫

ρ(r) (x2 − x̄2) d3r, (2.6)

works equally well for the classical and quantum case. ρ(r) is the
dimensionless density with

∫

d3r ρ(r) = 1 and x̄ is the x coordinate
of the “center” of the object. The integral is over all space. In this
form, ρ(r) can be the classical dimensionless density or the quan-
tum probability density ψ∗(r)ψ(r). The length in any direction can
be calculated by rotating the object so that the coordinate x-axis
is along the desired dimension of measurement. This is no differ-
ent than laying a ruler across an object along the desired direction.
Equation 2.6 is the central definition that is the subject of the inves-
tigations that follow.

Aside from having an abrupt edge, a second criteria for a classical
length to be well-defined is a sufficiently uniform material; if enough
material is missing from an object, it is reasonable to consider it to be
multiple separate objects. Classically, distinct objects are simple to
identify. From the quantum perspective, wave functions can partially
overlap, making it unclear where one object begins and the other one
ends. We will not provide a rigourous definition for the uniformity of
an object, nor when one object becomes two. Instead, we will apply
our definition to simple systems and investigate its consequences.
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Chapter 3

Single-Particle Length

We begin the discussion with one particle in a box, as shown in
Figure 2.1b, to gain a foothold before delving into the more complex
many-particle case. The ground state wave function, given by

ψ(x) =

√

2

a
sin
(πx

a

)

, (3.1)

is plotted in blue (light curve in grayscale) in Figure 2.1b. The square
of the wave function is shown in red (darker curve). Is the size of the
box the size of the system? If so, half the wavelength of the ground
state wavefunction defines the size, which is given by a.

To see why this is not so, consider the fact that contact forces
between objects are what allow the dimensions of a wood block to be
measured with a vernier calliper; and, these forces originate in the
electrons. The nuclei provide the scaffolding for the electrons and
the electrons in one object interact with the electrons in the another
one. So when we touch a table, the electrons in our finger repel
the electrons in the table. Thus, we assume that the particle in the
box is an electron and the box provides the confinement potential
as do nucleons in atoms and molecules. When we “touch” the box,
we are in fact touching the electron cloud. The walls of the box
merely provide the forces that keep the electrons confined and are
not physical objects that we can directly sense no more than we can
sense the nucleons in everyday interactions with our environment.

The quantum size of the system, we argue, is determined from
the breadth of the electron density, which is given by the square of

9
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the wavefunction as shown in red (darker curve) in Figure 2.1. The
uncertainty in the position of the ground state wavefunction is given
by

∆x = a

√

1

12
− 1

2π2
. (3.2)

Substituting Equation 3.2 into Equation 2.5 yields the length of a
quantum particle in a box, or

L = a

√

1− 6

π2
≈ 0.63a. (3.3)

The length given by Equation 3.3 defines an interval over which the
probability density remains above about 30% of its peak value. This
picture is a fully quantum one that offends our common sense that
objects have well-defined boundaries.



Chapter 4

Many-Particle Systems

4.1 Wave Functions

This Chapter introduces a precise notation that both reduces con-
fusion and simplifies taking expectation values of operators. The
highlighted text below describes the notation for two and three par-
ticles for illustration. The reader who is interested in the general
results can skip the highlighted sections.

Using two particles for illustration, their joint state vector is
expressed as

|n,m〉 = 1√
2

(

|n〉 |m〉 ± |m〉 |n〉
)

, (4.1)

where the plus and minus signs are for bosons and fermions.
We understand |n〉 |m〉 to mean “Particle #1 is in state n and
Particle #2 is in state m.” Thus, when kets are written side-
by-side, from left to right, they represent Particle #1, Particle
#2, and so on. Even though the particles are indistinguishable,
they are not treated as such at this point.

The ket |n,m〉 is expressed in agnostic form, and represents
two particles that occupy states n and m without distinguishing
which one is in which state. If we exchange the two particles we
find that |n,m〉 → ± |m,n〉. Since state vectors are unique up

11



12 CHAPTER 4. MANY-PARTICLE SYSTEMS

to a phase, both of them represent the same state, so we chose
to express the arguments in ascending order of their numerical
values, i.e. m > n.

We have used classical concepts to build a quantum-mechanical
object that no longer has these classical properties. We start
by treating the particles as distinguishable, write an expression
with built-in indistinguishability, then get a purely quantum ob-
ject. Our goal is to formulate the theory in a way that is fully
quantum in nature.

It follows that for a three-particle system, the wave function
is given by

|n,m, ℓ〉 =
1√
6

(

|n〉 |m〉 |ℓ〉 ± |n〉 |ℓ〉 |m〉+ |ℓ〉 |n〉 |m〉

± |l〉 |m〉 |n〉+ |m〉 |ℓ〉 |n〉 ± |m〉 |n〉 |ℓ〉
)

. (4.2)

We can express Equation 4.2 in a form that singles-out the state
vector of Particle #1

|n,m, ℓ〉 = 1√
3

(

|n〉 |n̄〉+ |m〉 |m̄〉+ |ℓ〉
∣

∣ℓ̄
〉

)

, (4.3)

where

|n̄〉 = 1√
2

(

|m〉 |ℓ〉 ± |ℓ〉 |m〉
)

, (4.4)

and where the other barred operators can be determined by
comparing Equations 4.3 and 4.2. Thus, we can view |n̄〉 as the
state that remains when Particle #1 is removed from state |n〉.
Note that Equation 4.3 shows all plus signs because the signs
can be absorbed into the barred states. It is straightforward to
verify that the barred states are orthonormal, or

〈n̄ | n̄′〉 = δn,n′ . (4.5)

The contracted form given by Equation 4.3 is useful in sit-
uations where the property of Particle #1 is to be calculated.
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For example, the probability density of Particle #1 is given by

ρ(x1) = |〈x1 |n, n, ℓ〉|2

=

∣

∣

∣

∣

1√
3

(

〈x1 |n〉 |n̄〉+ 〈x1 |m〉 |m̄〉+ 〈x1 | ℓ〉
∣

∣ℓ̄
〉

)

∣

∣

∣

∣

2

.

(4.6)

Orthonormality of the barred states collapses Equation 4.6, yield-
ing

ρ(x1) =
1

3

(

ρn(x1) + ρm(x1) + ρℓ(x1)
)

, (4.7)

where ρi(x1) = |〈x1|i〉|2 is the probability density of finding
Particle #1 at coordinate x1 when in state |i〉. Note that the sign
of the barred state is irrelevant when calculating ρ(x1) because
the barred states always appear in pairs of the form 〈n̄ | n̄〉. Since
the particles are indistinguishable, the result can be no different
if we had done the calculation for any other particle. Thus,
Equation 4.7 is the probability density for the system of three
particles as a whole. As such, the density can be expressed
simply as ρ(x1) → ρ(x).

All of the above concepts apply to many-particle states. As is
evident from the antisymmetric nature of the fermion wave functions,
if two particles occupy the same state, the wave function vanishes,
as required by the Pauli exclusion principle. As such, the ground
state |G〉 of the N -particle fermionic system can be expressed as the
determinant

|G〉 = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

|1〉 |2〉 . . . |N〉
|1〉 |2〉 . . . |N〉
...

...
. . .

...
|1〉 |2〉 . . . |N〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.8)

where we label the single-particle ground state |1〉. Similarly, any
state of noninteracting particles can be represented by

|n1, n2, . . . , nN 〉 = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

|n1〉 |n2〉 . . . |N〉
|n1〉 |n2〉 . . . |N〉
...

...
. . .

...
|n1〉 |n2〉 . . . |N〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.9)
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The contracted form given by Equation 4.3 is made clear by recog-
nizing that the barred state vector |n̄〉 is just the determinant of the
(N − 1)× (N − 1) sub-matrix formed by excluding the nth row and
nth column of the matrix.

Note that it is simpler to write Equation 4.8 than Equation 4.9,
so in the derivations that follow, we can express state vectors in the
form of Equation 4.8 and get the more general result by making
the substitution |i〉 → |ni〉. Note that if any two indices are the
same, i.e. ni = nj , two of the columns will be the same and the
determinant vanishes. This enforces the Pauli exclusion principle –
the state vector vanishes if any pair of fermions are in the same state.
In the calculations that follow for fermions, Pauli exclusion is obeyed
by constructing states vectors in which all occupied single-particle
states are different.

4.2 Many-Particle Matrix Elements

Again, we start with two- and three-particle examples to introduce
the student to how many-particle operators act on state vectors. The
shaded example can be skipped by the reader who wants to move on
to the general results.

It is straightforward to show that the expectation of the operator
A1, which acts only on Particle #1 reduces to

〈n,m, ℓ |A1 |n,m, ℓ〉 =
1

3

(

〈n |A1 |n〉

+ 〈m |A1 |m〉+ 〈ℓ |A1 | ℓ〉
)

, (4.10)

where orthonormality of the barred states forces only the diag-
onal components to contribute.

Using this convention, the multi-particle operations can be gen-
eralized as follows:

Equation 4.3 becomes

|1, 2, . . . , N〉 = 1√
N

N
∑

n=1

|n〉 |n̄〉 . (4.11)
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Equation 4.7 becomes

ρ(x) =
1

N

N
∑

n=1

ρn(x), (4.12)

where we drop the subscript because the particles are indistinguish-
able so that Equation 4.12 gives the probability density of any par-
ticle.

Equation 4.10 becomes

〈1, 2, . . . , N |A1 | 1, 2, . . . , N〉 = 1

N

N
∑

n=1

〈n |A1 |n〉 .

(4.13)

The notation used above is a bit sloppy. The operator Ai, which
acts on Particle #i, should more rigourously be expressed as

Ai →
∏

j 6=i

1jAi, (4.14)

where 1j is the identity operator in the Hilbert space of particle j.
Similarly, we can define the many-particle position operator in terms
of the single particle operators using

X =

N
∑

i=1

∏

j 6=i

1jxi. (4.15)

Equation 4.15 will be imprecisely written as

X =

N
∑

i=1

xi, (4.16)

where the identity operators are implicitly understood. We will be
imprecise in this way to avoid the proliferation of symbols.

Calculations must include the spin, and account for the Pauli
exclusion principle to fill the single-particle states. The ground state
vector of a spin-up electron we assign to |1〉 and a spin down-electron
is |2〉; the first excited statevector of a spin-up electron and spin-down
electron are designated |3〉 and |4〉; and so on. Thus, an odd integer
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n represents a spin-up electron in state
∣

∣

n+1
2 ,+

〉

and an even integer

n represents a spin-down electron in state
∣

∣

n
2 ,−

〉

. In this latter
representation, the first argument of the ket labels the single particle
energy eigenstate and the second argument labels the spin. We use
the former notation with only one index because of its simplicity,
especially when sums are involved, but move to the latter notation
when evaluating sums over occupied states.



Chapter 5

Quantum Length

This Chapter calculates the length using the observation that each
electron in a material is spread over the whole material. Since all
electrons are identical, the one-particle density is representative of
the whole material so its spread is the length.

We choose to get the length from Particle #1, which has a spread

∆x21 =
〈

G
∣

∣ x21
∣

∣G
〉

− 〈G |x1 |G〉2 . (5.1)

Using Equation 4.13, Equation 5.1 takes the form

∆x21 =
1

N

N
∑

n=1

(

〈

n
∣

∣x2
∣

∣n
〉

− 〈n |x | n〉2
)

, (5.2)

where we have dropped the subscript identifying Particle #1 since
this result holds for any particle. Using Equation 2.5, the length is
then given by

L =

√

√

√

√

12

N

N
∑

n=1

(

〈n |x2 |n〉 − 〈n |x |n〉2
)

.

Single-Particle Length

Many-Particle Wavefunction

(5.3)

When the potential is centrosymmetric about position x = 0, the
single-particle energy eigenfunctions have a definite parity, i.e.

ψn(−xi) = ±ψn(xi), (5.4)

17
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so Equation 5.4 yields

〈n |xi |n〉 =
∫

dxi ψ
∗(xi)xiψ(xi) = 0. (5.5)

If the zero of the coordinate system is shifted to x = c,

〈n |xi |n〉 =

∫

dxi ψ
∗(xi − c)xiψ(xi − c)

=

∫

dxi ψ
∗(xi)(xi + c)ψ(xi) = c. (5.6)

If the coordinate system of a centrosymmetric system is chosen so
that the symmetry axis is at x = c, Equation 5.6 can be substituted
into Equation 5.3, yielding

L = 2
√
3

(

1

N

N
∑

n=1

〈n|x2i |n〉 − c2

)1/2

.

Single-Particle Length

Many-Particle Wavefunction

Centrosymmetric Potential

(5.7)

Equation 5.7 is convenient because all quantities are calculated from
single-particle states and operators.



Chapter 6

Upper Bound of Length

Quantum constraints must be obeyed even in the classical limit. One
consequence of such constraints is an upper bound of length, which
depends on the energy spacing. The fact that the energy scale is the
important quantity makes intuitive sense for the particle in a box
since half the de Broglie wavelength defines the size of the box, and
the particles’ spatial spread must be smaller than the box.

All systems must obey the sum rules even when all electrons
interact with each other. The sum rules are derived in Appendix A
and used in this chapter. Let’s start with the simple single particle
case, whose sum rules are given by Equation A.4. Since all of the
terms in the sum are positive definite, replacing En1 ≡ En−E1 with
E21 makes each term smaller, thus yielding the inequality

∞
∑

n6=1

〈1|x |n〉 〈n|x |1〉E21 ≤ h̄2

2m
. (6.1)

The sum rules exclude the ground state. Adding the ground state to
the sum, then subtracting it yields

∞
∑

n=1

〈1|x |n〉 〈n|x |1〉 − 〈1 |x | 1〉2 ≤ h̄2

2mE21
, (6.2)

where we have divided both sides by the constant E21. Using closure,
defined by

1 =
∑

n

|n〉 〈n| , (6.3)

19
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we get from Equation 6.2

〈

1
∣

∣x2
∣

∣ 1
〉

− 〈1 |x | 1〉2 ≤ h̄2

2mE21
. (6.4)

The lefthanded side of Equation 6.4 is simply ∆x2, so gives the
length limit

Lmax =

√

6h̄2

mE21
. One Electron Length Limit (6.5)

For an object withN electrons, the ground-state sum rule is given
by

∞
∑

M=1

〈G|X |M〉 〈M |X |G〉EMG =
h̄2N

2m
, (6.6)

where we define EMG = EM − EG as the energy difference between
the many-particle excited state M and the many-particle ground
state, G. 〈M |X |Q〉 is the matrix element of the position operator
between the many-electron energy eigenstates labelled by M and Q.
Here X is given by

X ≡
N
∑

i=1

xi, (6.7)

where xi is the coordinate of the ith electron

We might be tempted to replace X , the many-particle operator,
with x1 as we did in calculating the length. However, this trick will
not work since it misses cross terms of the form 〈G|x1 |M〉 〈M |x2 |G〉.
This trick works in general when calculating the length – even when
the electrons interact – because each electron is delocalized over the
the whole system. No such physical argument applies to the sum
rules.

We calculate the many-particle length limit along the same lines
as we did for the single-particle case, but instead will get an upper
bound for ∆X2. Given Equation 6.7, it is not difficult to show that
∆x1 ≤ ∆X .

Since EMG is positive definite, if we replace it with the smallest
energy difference EFG in the sum on the left-hand side of Equation
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6.6, where F is the many-particle first excited state, we get

∞
∑

M=1

〈G|X |M〉 〈M |X |G〉EFG ≤ h̄2N

2m
. (6.8)

EFG is a constant, so dividing both sides of Equation 6.8 by EFG

yields

∞
∑

M=G

(

〈G|X |M〉 〈M |X |G〉

− 〈G|X |G〉 〈G|X |G〉
)

≤ h̄2N

2mEFG
, (6.9)

where the sum starts with M = G, and the extra term that results
is explicitly subtracted.

The left-hand side of Equation 6.9 defines ∆X2. Calculating the
length with ∆X yields

Lmax =

√

6h̄2N

mEFG
. General Length Limit (6.10)

Equation 6.10, while an overestimate, is nevertheless an upper bound.
We will see that in certain special cases, the calculated length will
be close to the calculated upper bound – making it a useful compu-
tational tool.

Equation 6.10 is a fundamental relationship that gives the upper
bound of length in terms of the quantum energy scale EFG, the
lowest possible energy above the ground state. In the classical limit,
where objects are large, the bound state energy differences approach
a continuum, permitting an arbitrarily-large length.

The length of a quantum system in its excited state Q is also well
defined. Consider the sum rule

∞
∑

M=G

〈Q|X |M〉 〈M |X |Q〉EMQ =
h̄2N

2m
, (6.11)

where terms withM < Q have a non-potive energy difference (EMQ ≤
0). Moving these terms to the righthand side of Equation 6.11 yields
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an expression where all the terms are non-negative, or

∞
∑

M=Q+1

〈Q|X |M〉 〈M |X |Q〉EMQ =
h̄2N

2m

+

Q−1
∑

M=G

〈Q|X |M〉 〈M |X |Q〉EMQ. (6.12)

Since EM,Q ≥ EQ+1,Q for M > Q,

∞
∑

M=Q+1

〈Q|X |M〉 〈M |X |Q〉EMQ ≥ EQ+1,Q

[

∞
∑

M=G

〈Q|X |M〉 〈M |X |Q〉

−
Q
∑

M=G

〈Q|X |M〉 〈M |X |Q〉
]

. (6.13)

Being a constant, EQ+1,Q can be moved outside the sum. Applying
closure so that

∑∞
M=G 〈Q|X |M〉 〈M |X |Q〉 =

〈

Q
∣

∣X2
∣

∣Q
〉

, Equa-
tion 6.13 can be used to re-express Equation 6.12 to get the length
of a system in excited state Q, LQ:

Lmax
Q = 2

√
3∆XQ =

(

6h̄2N

mEQ+1,Q

+ 12

Q−1
∑

M=G

〈Q|X |M〉 〈M |X |Q〉 EQ+1,M

EQ+1,Q

)1/2

.

Many Particle Excited State Length Limit

(6.14)

Equation 6.14 is not as elegant as Equation 6.10 because it de-
pends on the energy spectrum of the system below state Q. Itmn is
of interest, however, because the excited state length can be much
larger than the ground state length, implying that the length is not
an immutable material property.



Chapter 7

Applications

This Chapter applies the above formalism to particles in a box and
the harmonic oscillator. We compare the lengths to their fundamen-
tal limits and evaluate the classical asymptote when the number of
electrons becomes large. To do so requires that we first determine
the energy difference E21 of the many-body system in terms of the
single-particle state excitation energies. We also discuss the electron
density to show that the asymptote meets our classical expectations
and interpret the results in terms of classical concepts.

7.1 Particle in a Box

The particle in a box is the ideal system for studying length by
virtue of its sharp walls. We have two choices for building a box.
First, we can fix the box’s size, then fill it with electrons. A more
realistic model is to increase the size of the box in proportion to the
number of electrons, which more closely reflects a real system such
as a metal rod. With each added atom, the lattice become larger
and simultaneously gains conduction electrons. We calculate both
cases, starting with the simpler case of the fixed box size.

7.1.1 Fundamental Limit

We start by applying the fundamental limits to the particle in a box
for N noninteracting electrons. The first step is to determine the

23
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energy difference E21 for the many-particle system in terms of the
single-particle energies and the number of electrons. From this, we
can calculate the scaling of the fundamental limit with number of
electrons and evaluate the classical limit.

e1

e2

E21 4 3= e e-

E

(a) (b)

e3

e4

(c) (d)

Figure 7.1: (a) The ground state and (b) the first excited state of
N particles in a box when N is even; and, (c) ground state and (d)
first excited state when N is odd.

The nth eigenenergy of a single particle in a box of length a0 is
given by

en =
n2π2h̄2

2ma20
, (7.1)

where we use the lowercase symbol for energy to denote a one-particle
state and n = 1 is the single-particle ground state. Figure 7.1 shows a
diagram of the electrons in the system’s ground state and first excited
state. In this example, since the electrons are non-interacting, E21 =
e3 − e4 for both cases shown.

The sums in Equation 5.3 are over the filled states. Pauli ex-
clusion demands that two electrons in the same single-electron state
must be of opposite spin. This is imposed with the definition

|n〉 =
{

∣

∣

n+1
2 ,+

〉

for n odd
∣

∣

n
2 ,−

〉

for n even
. (7.2)

In the ground state, then, there are two electrons in each single-
particle energy eigenstate i up to the fermi energy. The pair of
opposite spin states can be expressed as |i,−〉 and |i,+〉.
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For the N -electron system, the highest-occupied state, nh, is
given by,

nh =

{

N+1
2 for N odd

N
2 for N even

. (7.3)

For an even number of electrons, the lowest energy transition is the
one that promotes the highest occupied electron to the first unoccu-
pied state, as shown in Figures 7.1a and 7.1b. The situation is more
complex for an odd number of electrons. For a particle in a box,
the lowest-energy transition promotes the electron from the highest
occupied state populated with two electrons to the state with one
electron, as shown in Figures 7.1c and 7.1d. If the energy-level spac-
ing decreases with increased energy, then the single electron in the
highest-occupied state would be promoted.

Using Equation 7.3 and Equation 7.1, the energy difference for
the N -electron system is given by E21 = enh+1 − enh

for an even
number of electrons and E21 = enh

− enh−1 for an odd number of
electrons, yielding

E21 =











(N+1)π2h̄2

2ma2

0

for N even

Nπ2h̄2

2ma2

0

for N(6= 1) odd

. (7.4)

Note that Equation 7.4 holds for N > 1. To calculate E21 for N = 1,
simply evaluate the even case of Equation 7.4 using N = 2.

Substituting Equation 7.4 into Equation 6.10 yields the upper
bound on the length of the box,

Lmax =















2
π · a0 ≈ 0.64a0 for N = 1

2
√
3

π

√

N
N+1 · a0 for N even

2
√
3

π · a0 ≈ 1.1a0 for N 6= 1 odd

.

Particles in a Box Length Limits

(7.5)

Equation 3.3, which gives the actual quantum length of a single par-
ticle in a box of L ≈ 0.63a0, falls a tad below the upper bound of
the length Lmax ≈ 0.64a0 given by Equation 7.5. Interestingly, the
even and odd electron limits both asymptote to Lmax ≈ 1.1a0 for
large N , which is marginally larger than the box size a0. As shown
below, the actual quantum length falls short of these limits.
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For the infinite well, the classical turning points are at the walls,
well beyond the point where the probability density decreases rapidly
for the case of the single electron. Thus, the quantum length for a
single electron is shorter than what is expected for the classical limit.

A large number of electrons defines the classical limit, where the
upper bound for the size asymptotes to a value that is slightly larger
than the box size. The fact that the difference in size between the
one-electron (quantum limit) and N -electron (classical limit) upper
bound is within a factor of two is surprising. Mathematically, this be-
havior comes about because the energy difference between the ground
state and first excited state scales in the large N limit in proportion
to N . Thus, in the expression for the limit given by Equation 6.10,
the energy denominator’s growth is cancelled by the numerator.

Finally, the predicted upper bound of the length marginally ex-
ceeds the wall separation, a reasonable result because the actual size
calculated is both less than the upper bounds and the wall separa-
tion.

The upper bound is determined from the actual energy difference
E21 for a particle in a box. It is well known that multiple distinct
Hamiltonians can yield the same energy spectrum, so it is possible
that another quantum system may share the same energy spectrum
with a particle in a box, but might be larger. However, there is no
way of knowing if such a system does indeed exist. This ignorance
was eloquently articulated in a paper by Kac in 1966 asking if it is
possible to hear the shape of a drumhead.[9] The answer is no!

Next we consider a large box made by connecting smaller boxes
together, as one would get when adding atoms to a lattice or bonds
to a molecule. Figure 7.2a shows an energy-level diagram for the
unit cell with one particle in its ground state and Figure 7.2b shows
the first excited state. As in the case of the previous problem with
fixed wall spacing, the energy difference between these to states is
given by E21 = e2 − e1.

Each of these building blocks when placed end-to-end add both
length and electrons. If each electron remains confined to its own
cell, the length of the object is simply given by the quantum length
of the cell multiplied by the number of cells. We later show that such
classical additivity holds in the quantum limit. Alternatively, if all
electrons are delocalized over the full length as unit cells are added,
the system retains its quantum coherence into the classical regime.
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Infinite well,
width 2a0

e1

e2E21

E

y1(x)

y1(x) y2(x)

y2(x)

(a) (b) (c)

Figure 7.2: (a) The energy-level diagram of the ground state of a
particle in a box, (b) the first excited state, and (c) the two lowest-
energy eigenfunctions.

We treat this quantum case first and later consider the parsing of a
ruler.

We will be evaluating matrix elements of the form 〈n| f(x) |m〉,
where f(x) = x and f(x) = x2. When n is even and m is odd,
the matrix elements can be expressed in terms of integers p and q,
yielding,

〈2p| f(x) |2q + 1〉 = 〈p| f(x) |q〉 〈+| −〉 = 0, (7.6)

where we have used Equation 7.2. As such, the matrix elements of
any function of the operator x vanishes when evaluated between an
even and odd quantum number of the one-electron states because
those correspond to opposite spins.

Assuming that there is one electron per unit cell (or per bond),
and that the size of the unit cell is a0, the ground and first excited
state configurations are shown in Figure 7.3a for six electrons. The
Pauli Exclusion principle allows two electrons per state. Since the
energy spacing increases with quantum number n, the first excited
state for seven electrons is the one where the electron from State
3 is excited to State 4, as shown in Figure 7.3b. Note that in this
case, since adding the seventh electron makes the box larger, the
energy spacing decreases. We again assume that the electrons do
not otherwise interact so the energy difference for both cases is given
by E21 = e4 − e3.
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y3(x)

y4(x)

E21 e3

e4

N = 6 N = 7

a = 6a0 a = 7a0

(a) (b)

(c)

E21

e3

e4

Figure 7.3: The energy-level diagrams of the ground state and first
excited state of a box with (a) six electrons and (b) seven electrons.
(c) A plot of the two one-particle wavefunctions at the fermi level.

This problem is identical to the case of the fixed box with the
box width given by a = Na0, so Equation 7.5 becomes

Lmax






even N
odd N







≤ Na0 ·
2
√
3

π
·
√

N

N + 1
2 ± 1

2

, (7.7)

which applies only to N > 1. Recall that the one-electron case is
unique because the electron making the transition is simultaneously
in the lowest-possible energy eigenstate and the highest occupied
state. The classical limit N → ∞ yields

Lmax
N→∞ =

2
√
3

π
Na0 ≈ 1.1Na0, (7.8)
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in accord with the classical world; the length grows in proportion
to the number of building blocks that are connected. However, the
length change for each additional electron in the quantum regime
varies depending on the number of electrons being even or odd.

7.1.2 Actual Quantum Length

In this section, we apply Equation 5.7 to calculate the quantum
length of a particle in a box. To do so requires that we calculate
〈

n
∣

∣x2
∣

∣n
〉

. For convenience, we place the left-hand side of the box
at x = 0 and make it of length a, so

〈

n
∣

∣x2
∣

∣n
〉

=
2

a

∫ a

0

dxx2 sin2
(nπx

a

)

. (7.9)

Equation 7.9 can be integrated by making the trigonometric sub-
stitution sin2 θ = (1−cos 2θ)/2; integrating the second term by parts,
twice; and then using the fact that the sine function vanishes at the
endpoints, which yields

〈

n
∣

∣x2
∣

∣n
〉

= a2
(

1

3
− 1

2π2n2

)

. (7.10)

Equation 7.10 leads to the single-particle length in state n of

Ln =

√

12

(

〈n |x2 |n〉 − a2

4

)

= a

√

1− 6

π2n2
,

Length of a Single Particle in a Box in State n

(7.11)

where we have used Equation 5.7 with N = 1 and c = a/2. Note
that the excited-state length approaches the size of the box in the
limit of large energy (limn→∞ Ln = a).

It is worthwhile to discuss the single-particle length of an excited
state before proceeding to the many-electron case. The interpreta-
tion of the electron probability density as defining the system’s size
for an excited state can be analyzed as follows. Consider, for exam-
ple, a particle in a box in state q, with a density as shown in Figure
7.4. Defining the average density over one period as

〈

|ψ(x)|2
〉

=

∫ x+ L
2q

x− L
2q

|ψ(ξ)|2 dξ, (7.12)
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inside the well the density is constant if the range of integration
is contained within the well and falls to zero outside the well over
half a period, as shown by the dashed curve. The capped horizonal
lines represent the range of integration and the points are the average
density for several representative points near the left wall of the well.

Position, x

 | (x)|2   <| (x)|2>
 V(x)    Range

Infinite
Well

Figure 7.4: The density of a particle in a box in state q = 6 (solid
curve) and the average density over one period (dashed curve). The
horizontal lines represent the range of averaging and the points are
the average values near the left wall of the well.

A higher-energy state has a wave function with more nodes than
a lower energy one. Thus, at higher energies, there are many oscil-
lations and the average density appears uniform inside the well and
falls rapidly to zero at the walls, as we would expect in the classical
limit. Thus, even though the microscopic view shows voids, they are
not visible on macroscopic scales when the measurement resolution
exceeds a period. As such, an excited state in the classical limit has
uniform density and sharp edges.

Now we return to the problem at hand of calculating the length
of the many particle ground sate. Substituting Equation 7.10 into
Equation 5.7 and using the fact that the square well is a centrosym-
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metric potential centered at a/2 yields

L2
N = a2



1− 12

π2N

N/2
∑

n=1

1

n2



 .

Length of N-particles in a box

(7.13)

Here we have assumed that there are an even number of electrons and
two electrons occupy each of the lowest-energy states. Equation 7.13
in the two-electron limit agrees with Equation 3.3. In the classical
limit with many electrons, Equation 7.13 gives

lim
N→∞

LN = lim
N→∞

a

√

(

1− 2

N

)

= a, (7.14)

where we have used the fact that
∑∞

n=1 n
−2 = π2/6. This size,

determined form the electron cloud, equals the distance between the
classical turning points and the length is below the limits given by
Equation 7.5.

If instead we build a system by adding electrons as we did in the
calculations of the limits in Chapter 7.1.1, we make the substitution
a = a0N in Equation 7.13, and the length of the box for N → ∞
asymptotically approaches Na0. Again, the asymptote is given by
the distance between the classical turning points.

7.1.3 Electron Density

The probability density from Equation 4.12 gives

ρ(x) = |ψ(x)|2 =
1

N

N
∑

n=1

|ψn(x)|2 . (7.15)

Figure 7.5 shows a plot of the electron density as a function of po-
sition within a box of width a. Shown are electron densities for 2,
6, 18, 54, and 400 electrons; which fill states up to 1,3, 9, 27, 200 (2
electrons per state). This plot makes clear how the density becomes
uniform and the edges sharp in the classical limit where the number
of particles becomes large.

Figure 7.6 shows a plot of the electron density as a function of
position inside a box using the same parameters as in Figure 7.5,
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Figure 7.5: The electron density in a box as a function of the highest
occupied state n =1, 3, 9, 27, and 200. In the classical limit, where
the number of electrons becomes large, a uniform probability density
with sharp edges is observed.

except the ground state is unoccupied. As a result, the electron
density for small numbers of electrons is distorted so that it sags at
the object’s middle. However, a missing electron has little effect in
the classical limit. The electron density is thus robust to missing
electrons for an object with a large numbers of electrons.

Equation 7.5 is reminiscent of a mixed state – one that is viewed
in terms of population fractions of separate particles rather than
originating from an entangled state as represented by Equation 4.8.
The density operator for a mixed state with N electrons populating
N different states with equal probability is

ρ =
1

N

N
∑

n=1

|n〉 〈n| , (7.16)
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Figure 7.6: The electron density in a box as a function of the highest-
occupied state n =2, 3, 9, 27, and 200 where the ground state is
unoccupied.

which gives the electron density

ρ(x) ≡ ρ(x, x) = 〈x | ρ |x〉 = 1

N

N
∑

n=1

〈x | n〉 〈n |x〉

=
1

N

N
∑

n=1

|ψn(x)|2 , (7.17)

the same as Equation 7.15.
The quantum entangled state and the mixed state represent very

different objects. The entangled state is a pure quantum state in
which the entanglement between all the electrons manifests in the
state vector changing sign when any two electrons are interchanged.
The density matrix, on the other hand, might for example represent
N independent particles that are each in a different energy eigen-
state. This smells of a classical system, where the particles are not
entangled, as we see from the position matrix elements of the den-
sity matrix, which are not antisymmetric upon interchanging any
two particles. So these two very different systems happen to give the
same density.

The density operator given by Equation 7.16 is a very specific
one, where the population of particles is equally distributed amongst
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the N states. More complex density operators are possible, which
have distinct diagonal matrix elements as well as off-diagonal ones.
Let’s see if we can construct an N -particle system that gives the
same result as would a density matrix. As we show below, we can
construct a wave function to match any kind of density matrix with
a superposition of states. What do such systems represent?

When electrons interact, the state vectors are more difficult to
determine. However, without solving the problem, we know that
the normalized ground state wave function can be expressed as a
superposition of noninteracting state vectors of the form

|G〉 =
∑

n1,...,nN

cn1,...,nN
|n1, . . . , nN〉 , (7.18)

where the sum is restricted to indices that are all distinct from each
other.

The electron density calculated from Equation 7.18 as was done
with Equation 4.6 yields

ρ(x) = |〈x1 |G〉|2 =

∣

∣

∣

∣

∣

∑

n1,...,nN

cn1,...,Nn
〈x |n1〉 |n2, . . . , nN 〉

∣

∣

∣

∣

∣

2

, (7.19)

where we use the fact that x is the same as x1. Evaluating Equation
7.19 yields

ρ(x) =
∑

n1n′
1

∑

n2,...,nN

c∗n′
1
,n2...,Nn

cn1,n2...,Nn
ψ∗
n′
1

(x)ψn1
(x), (7.20)

where we have used that fact that states |n2, . . . , nN〉 are orthonor-
mal so the inner product between two such states vanishes unless all
the same states are occupied in each. Defining

ρn′
1
,n1

=
∑

n2,...,nN

c∗n′
1
,n2...,Nn

cn1,n2...,Nn
, (7.21)

Equation 7.20 can be expressed as

ρ(x) =
∑

n1n′
1

ρn′
1
,n1
ψ∗
n′
1

(x)ψn1
(x). (7.22)

Equation 7.22 has the general form of a density matrix, where the
coefficients depend on the interaction potentials between the elec-
trons.
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We interpreted Equation 7.16 in terms of classical populations,
as do many textbooks. Landau, one of the earlier developers of the
density matrix had this to say[10] “The averaging by means of the
statistical matrix [this is his term for the more modern density ma-
trix] ... has a twofold nature. It comprises both the averaging due
to the probabilistic nature of the quantum description (even when as
compete as possible) and the statistical averaging necessitated by the
incompleteness of our information concerning the object considered.
Fore a pure state only the first averaging remains, but in the sta-
tistical cases both types of averaging are always present. It must be
borne in mind, however, that these constituents cannot be separated;
the whole averaging procedure is carried out as a single operation,
and cannot be represented as the result of successive aver-

aging, one purely quantum-mechanical and the other purely

statistical.)” The emphasis is mine to stress the importance of this
last clause.

In calculating the probability density with the inner product of
the position state vector of Particle #1 with the full state vector,
we are using quantum mechanics in a single step. Alternatively,
we might consider Particle #1 as the “system” and the rest of the
particles as the “environment.” Then we might treat the environment
in some averaged way to get the density matrix without complete
knowledge of the details. Landau is saying that quantum mechanics
is the fundamental theory of nature. The density matrix appears
along the way to calculating the length. This magical transition to a
density matrix originates in the quantum probability density being
calculable from the density of one specific electron. This transition
can be scrutinized to understand how the two views are reconcilable.

7.2 Harmonic Oscillator

The harmonic oscillator is a unique system by virtue of the fact that
the eigenenergies are equally spaced, so that

E21 = h̄ω, (7.23)

where ω is the natural frequency of oscillation. This energy difference
is the same for any pair of energetically adjacent eigenstates.
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The position operator is given by

x =

√

h̄

2mω

(

a+ a†
)

, (7.24)

where a and a† are the lowering and raising operators with the action
a |n〉 =

√
n− 1 |n− 1〉 and a† |n〉 =

√
n |n+ 1〉, where |n〉 is the

nth energy eigenvector. Note that we are using the unconventional
notation that the ground state vector is |1〉 to make this book self
consistent throughout. Then

〈n|x |q〉 =
√

h̄

2mω

(

√

q − 1δn,q−1 +
√
qδn,q+1

)

, (7.25)

and

〈n|x2 |n〉 = h̄

2mω
(2n− 1) . (7.26)

Using Equation 5.3 for the quantum length, Equation 7.26 leads to

Ln =

√

6h̄

mω
(2n− 1).

Excited State Length of Single Particle

Harmonic Oscilator in State n

(7.27)

Unlike the particle in a box, a particle in a harmonic potential
cannot be localized by sharp boundaries, so we use the turning points
instead as an estimate of its size, which is determined from the two
points in the particle’s trajectory where the velocity vanishes. The
zero-velocity condition for state n is met when the kinetic energy
vanishes, leaving only potential energy, or

h̄ω(n− 1/2) =
1

2
mω2x20(n). (7.28)

We can then think of the distance between turning points as the
classical length since the particle is confined to this region, and is
calculated from Equation 7.28 to yield

Ln = 2x0(n) =

√

4h̄

mω
(2n− 1).

Distance Between Turning Points in a

Single-Particle Harmonic Oscillator in State n

(7.29)
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A comparison of Equation 7.29 and Equation 7.27 shows that the
turning point separation and the quantum length of an excited state
scales in the same way, but the quantum length is larger by

√

3/2. In
contrast, the walls of an infinite well are the classical turning points,
which also define the length in the limit of the many particle system.

Using Equation 6.14 for the excited state length, and recalling
that the position operator connects only adjacent states, for one
electron, we get

L2
q

12
≤ h̄2

2mEq+1,q
+ 〈q|x |q − 1〉 〈q − 1|x |q〉 Eq+1,q−1

Eq+1,q
. (7.30)

Evaluating the position matrix elements and the energies, we get

Lq ≤
√

6h̄

mω
(2q − 1). (7.31)

Thus, the harmonic oscillator in an excited state, as given by Equa-
tion 7.27, is at its length limit.

This all meets with our classical expectations when we consider
the classical turning points as a rough estimate of the length of a
harmonic oscillator, which is defined by Equation 7.29.

7.2.1 Length Limit

The length limit for non-interacting electrons is calculated using
Equation 7.23 with Equation 6.9, yielding

Lmax
HO =

√

6h̄N

mω
. N-Particle Harmonic Oscilator Length Limit

(7.32)
The particle in the highest-occupied state will have the largest

oscillation amplitude. The fermi energy indexed by state number
n corresponds to the highest occupied state, where n = N/2 for N
even and n = (N+1)/2, for N odd, which using Equation 7.29 yields
a distance between turning points of

LN = 2x0(N) =











√

4h̄
mωN for N odd

√

4h̄
mω (N − 1) for N even

N-Particle Harmonic Oscilator Turning Point Length

(7.33)
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The length given by Equation 7.33 falls below the predicted
length limit given by Equation 7.32, which for one electron or large
N asymptotes to

lim
N→∞

LN

Lmax
HO

= lim
N→∞

√

4N

6N
=

√

2

3
= 0.82. (7.34)

The quantum mechanical length limit of a harmonic oscillator ex-
ceeds the distance between turning points, as it should because the
wave functions extend beyond the classical turning points. As for
particles in a box, the quantum length for an even number of parti-
cles differs from the classical limit for a small number of electrons,
and an even number of particles give a slightly different length per
added particle. Finally, whereas the length of the electron cloud is
constant in the classical limit of the fixed box size and increases as N
with the number of electrons when unit cells are added, the harmonic
oscillator length limit increases as

√
N .

7.2.2 Actual Quantum Length

Here, we determine the length of the harmonic oscillator using Equa-
tion 5.7. Since the coordinate system of the harmonic oscillator is
centered at the symmetry point, c = 0 in Equation 5.7, so we need
only to determine

〈

n
∣

∣x2
∣

∣n
〉

.

Substituting Equation 7.26 into Equation 5.7 yields

L2 = 12 · 1

N
·

N
∑

n=1

h̄

2mω
(2n− 1) . (7.35)

The upper limit of the sum is given by the energy eigenstate indexed
by nh from Equation 7.3, the highest-occupied single-particle state.

If the highest occupied state is nh, the sum in Equation 7.35 can
be evaluated using Equation 7.26. For an even number of electrons,
we get

Σ = 2 ·
nh
∑

n=1

(2n− 1) = 2n2
h, (7.36)

where the perfector of 2 accounts for the fact that there are 2 elec-
trons in each state. Using Equation 7.3, for an even number of
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electrons, the sum in Equation 7.36 is

Σeven =
N2

2
. (7.37)

For an odd number of electrons one of the spins occupies state nh

while the other spins occupy up to state nh−1. Thus, the sum splits
into two parts:

Σodd =

nh
∑

n=1

(2n− 1) +

nh−1
∑

n=1

(2n− 1)

= (nh − 1)2 + n2
h. (7.38)

Substituting Equation 7.3 into Equation 7.38 yields,

Σodd =
N2 + 1

2
. (7.39)

Summing Equation 7.26 with the help of Equations 7.37 and 7.39
yields

filled
∑

n=1

〈n|x2 |n〉 =







h̄(N2+1)
4mω for N odd

h̄N2

4mω for N even.

(7.40)

Substituting Equation 7.40 into Equation 7.35 yields the quantum
length

L =

√

3h̄

mω







√

N + 1/N for N odd

√
N for N even.

N-Particle Harmonic Oscilator Length

(7.41)

Comparing Equation 7.41 with the upper limit given by Equation
7.32, we find that with N = 1 and N = 2, the actual length is at the
upper bound but in the classical limit, the actual length asymptotes
to 1/

√
2 of the limit.

7.2.3 Electron Density

Figure 7.7 shows a plot of the probability density of a harmonic oscil-
lator as a function of position normalized to the ground state turning
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Figure 7.7: The electron density in a harmonic oscillator with highest
occupied state number n =1, 4, 16, 64, and 150. In the classical limit,
where the number of electrons becomes large, a smooth probability
density develops. The vertical dotted lines give the classical turning
points of the highest-occupied state and the dashed lines the edge as
determined from the length calculation.

point when filled with one to 300 electrons. The plots are labelled by
highest occupied state. The dotted vertical lines show the locations
of the classical turning points as determined from Equation 7.23 and
the position is normalized to the ground state turning point. The
vertical dashed lines show the position of the edge of the oscillator
as determined from the length calculation given by Equation 7.41.
Both the quantum length and turning point lie within the calculated
upper bound of the length.

For a few electrons, the probability density shows oscillations, but
in the classical limit, the electron distribution becomes smooth and
flat in the middle. The turning points defined by the highest occupied
state straddle most of the electron density and the calculated length
defines a region where the electron density is flat. This central flat
region becomes wider in proportion to

√
N as more electrons are

added.



Chapter 8

Bosons

Let’s next consider a system made of noninteracting bosons. Since
the state vector is symmetric upon interchange of any two particles,
the ground state is the one where all N particles occupy the single-
particle ground state, or

|G〉 = |1, 1, . . . 1〉 . (8.1)

The upper bound for the length of a bosonic system is then given
by Equation 6.10 with E21 = e21, i.e. the single-particle energy
difference represents the many-electron system’s energy difference,
or

L ≤

√

6h̄2N

me21
. (8.2)

For a system with e21 equal to that of a particle in a box as given
by Equation 7.1, Equation 8.2 gives a length limit of

Lbox ≤ 2a

π

√
N. (8.3)

This result disagrees with Equation 7.5 for fermions. Recall that
for the particle in a box, the fermion upper limit gives a length
that is less than the wall spacing for one particle and converges to
a length about 10% larger than the separation between the walls in
the classical limit. In contrast, the upper bound for the length of
a material made of bosons increases without bound in proportion
to

√
N . Thus, the length of a system of fermions with the energy
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spectrum of a box cannot increase as electrons are added, but a
system of bosons might do so.

The actual length of a system of non-interacting bosons in a box
is simple to compute using the single-particle method with the wave
function given by Equation 8.1, yielding

Lbox = a

√

1− 6

π2
, (8.4)

which is independent of the number of bosons. Therefore, the actual
length of the box is just a couple percent smaller than the length
limit give by Equation 8.3 with N = 1. For a system of fermions in
a box, the actual length for one particle is the same as for a boson,
but increases when fermions are added, and converges to the distance
between the walls.

For a harmonic oscillator energy spectrum, the length limit for
N bosons is given by

LHO ≤
√

6h̄N

mω
. (8.5)

Equation 8.5 agrees with the fermion length limit as given by Equa-
tion 7.32. This is due to the fact that the energies are equally spaced,
so the excitation energy is independent of the highest-energy occu-
pied state.

The density of Particle 1 of the ground state of a collection of
Bosons is given by

ρ(x1) = |〈x1 |G〉|2 = |〈x1 | 1, 1, . . . 1〉|2 = |ψ1(x1)|2 . (8.6)

Thus, it is not surprising that the quantum length of the many-
particle system of bosons in their ground state is the same as the
single-particle result for any system. For a harmonic oscillator well
filled with Bosons, the upper bound grows as

√
N but the actual

length remains constant as a function of the number of electrons, as
it did for a particle in a box.

We saw for fermions that the particle density function in the
large-particle-number limit approaches a step function for a particle
in a box and is also flat near the origin for the harmonic oscillator.
For bosons, the particle densities for the box and the harmonic os-
cillator potential are peaked functions, and the shape is independent
of the number of particles. This behavior contradicts our intuition
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of how a system should behave because the materials with which we
interact are are made of fermions. In a world of bosons, rulers would
not have sharp ends so length would no longer have meaning in the
classical limit.

Note that we could in principle construct a boson state vector
that is of the same form as the fermion state vector given by Equation
4.9 except that the alternating signs given by the slater determinant
for fermions are all positive signs for the bosons. Then, it is easy
to show that the single-particle approach gives the same length for
bosons as for fermions since the signs do not change the result. Then,
the bosonic system would behave as we expect in the classical limit,
making rulers with sharp boundaries. But, the system would be in an
excited state. So, bosons can be prepared in a way that makes their
classical limit appear fermion-like; but fermions cannot be prepared
in a state that mimics bosons because of Pauli exclusion.
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Chapter 9

Coherent States

A coherent state is described by the state vector |α〉, which is an
eigenstate of the annihilation operator a, or

a |α〉 = α |α〉 (9.1)

with complex eigenvalue α. Note that coherent states are useful for
describing photons but are applicable to material systems, and were
in fact originally studied by Schrödinger for the harmonic oscillator.[11]
A coherent state is given by

|α〉 = eiδe−|α|2/2
∞
∑

n=0

αn

√
n!

|n〉

= eiδe−|α|2/2
∞
∑

n=0

αn
(

a†
)n

n!
|0〉

= eiδ−|α|2/2+αa† |0〉 , (9.2)

where δ is an arbitrary global phase that can be selected for conve-
nience. The student can easily verify that Equation 9.2 is a coherent
state by evaluating Equation 9.1. Note that we are here using the
more common notation that |0〉 is the ground state. We do so only
in this section.

The coherent state has been constructed so that the annihila-
tion operator has the eigenvalue α; so, the expectation value of the
annihilation operator is obviously given by

〈α | a |α〉 = α (9.3)
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and the expectation value of the creation operator is then given by

〈

α
∣

∣ a†
∣

∣α
〉

= 〈α | a |α〉∗ = α∗. (9.4)

Similar manipulations trivially yield

〈

α
∣

∣ (a†)nam
∣

∣α
〉

= (α∗)nαm. (9.5)

Coherent states are normalized but not orthonormal, with

〈α |β〉 = e−(|α|2+|β|2)/2eα
∗β . (9.6)

A coherent state is an example of a very special kind of superpo-
sition of sates that gives the minimum uncertainty product ∆x∆p.
We start by calculating the single-particle length. The expectation
of the position of a particle in a harmonic well is given by

〈α |x |α〉 =
√

h̄

2mω

〈

α
∣

∣ a+ a†
∣

∣α
〉

=

√

h̄

2mω

(

α+ α∗
)

(9.7)

and the expectation of the square of the position is

〈

α
∣

∣x2
∣

∣α
〉

=
h̄

2mω

〈

α
∣

∣

∣ a2 +
(

a†
)2

+ 2a†a+ 1
∣

∣

∣α
〉

=
h̄

2mω

(

α2 + (α∗)2 + 2 |α|2 + 1

)

. (9.8)

Using the definition of length given by Equation 2.4, the length
of the coherent state in state |α〉 is calculated using Equation 9.7
and 9.8, and is given by

Lα =

√

6h̄

mω
. (9.9)

The length is independent of the eigenvalue α of the state and is
just above the distance between the classical turning points of the
ground state.

To understand this result, recall that Equation 7.29 gives the
length of a harmonic oscillator in state n as the distance distance
between the classical turning points. The expectation value of energy
of a coherent state is given by

〈α |H |α〉 = h̄ω
〈

α
∣

∣ a†a+ 1/2
∣

∣α
〉

= h̄ω(α∗α+ 1/2). (9.10)
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Setting the energy to the potential energy at the turning point yields

L′
α = 2x0(n) =

√

4h̄

mω
(2α∗α− 1).

Distance Between Turning Points in a Single-

Particle Harmonic Oscilator Coherent State |α〉

(9.11)

Equation 9.9 shows that the length of the coherent state is in-
dependent of α but the distance between turning points given by
Equation 9.11 does. Since the coherent state is a localized wave
packet that resembles a particle, the length given by Equation 9.9 is
the width of the wave packet and is thus the size of the particle itself.
The distance between turning points, on the other hand, is the ex-
cursion amplitude of the particle in the harmonic well. This example
serves to show that the general length definition

√
12∆x gives the

wave packet’s width, which describes the size of the particle. The
distance between the turning points is only an estimate of the length
when the wave function is delocalized over the well, as it is when a
single particle is in an excited state – as given by Equation 7.27, or
when many particle are in the ground state – as given by Equation
7.41.

Clearly, one can construct a fully antisymmetrized state vector
for several particles, each in a coherent state. The length of this
system of particles will be a complicated function of the motions of
the particles, and might lead to interesting behavior, but is beyond
the scope of this book.
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Chapter 10

Discussion

This Chapter focuses on the use of a ruler, the ramifications of mak-
ing subdivisions, its accuracy, and the implications of entanglement
between a ruler and the object being measured. A boson ruler is also
discussed.

10.1 Rulers

There is a connection between a measure of length with a line of
stones and the spread of a quantum mechanical electron cloud. Fig-
ure 10.1 shows a length determined by the congruence of the ends
of the object and the number of identical stones that fit between its
ends. Doing so requires that the object be well-enough defined to
locate its edges.

A ruler operates on the same principle. Rather than making
lots of small identical rods, a single object is marked at uniform
intervals to signify the points of contact of a stack of many tiny
rods of equal length. If the markings are to be resolvable, the de
Broglie wavelength of the electrons in the ruler material must be
shorter than the width of the markings. Otherwise, the markings
would not indiscernible. Thus, a ruler with markings must obey the
same quantum physics as a stack of rods with localized electrons in
each one. We choose to use a stack of rods as the paradigm for ruler
segments, each represented by electrons in a box, and separated by
a quantum length.
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Figure 10.1: An object’s length determined using it’s equivalence in
number of stones; and using a ruler made of small pieces or a single
piece with markings.

The bottom portion of Figure 10.1 shows a ruler and a magnified
view of the point of contact. We will assume that the length of a
segment is given by its quantum length and when stacked, the overall
length is given by the sum of the individual segment lengths. This
property of additivity applies when the electrons are delocalized only
over each small segment. If the electrons are delocalized over the
whole rod, it would behave as a single unit rather than a composite
of parts, and no demarcations would be defined – making it useless
as a ruler.

Consider a rod of length L that is determined to be of the same
size as the object that is being measured. When the electrons are
delocalized over the rod, we model it as particles in a single large box
that is made of N unit cells each of length a0 and each contributing
one electron, for a total of N electrons. The length of the N -electron
box is given by the spread of the electron density. In the limit of
many electrons, the length is L = Na0, which coincides with the
walls of the full box. The length of a unit cell in isolation, which
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contains one electron, is given by Equation 3.3.

Next, we divide the rod into R equal cells, where R ≤ N , to
construct a ruler where the contact points between the segments
define the markings of the ruler. We assume that the electrons are
localized in their own segments; and, when the segments are pressed
together, the length will be the sum of the quantum lengths of the
segments, an assumption we treat later.

Using Equation 7.13, the length of one segment is

∆LR(N) =

√

√

√

√

(Na0/R)2

(N/R)/2

N/2R
∑

n=1

(

1− 6

π2n2

)

, (10.1)

where we have used N → N/R and a = Na0/R. Thus, the box size
defining the rulings decreases in proportion to R. Obviously N/R
must be an integer since unit cells cannot be subdivided. The length
of the rulings is then given by LR = R∆LR, which using Equation
10.1 yields

LR(N) = a0N

√

√

√

√1− 12

π2
· R
N

·
N/2R
∑

n=1

1

n2
, (10.2)

where we have used the fact that
∑N/2R

1 1 = N/2R to evaluate the
first term in the parentheses in Equation 10.1. When R = 1 and
N is large, Equation 10.2 gives the length LR = Na0, as we would
expect for a rod with N unit cells.

For ruler segments of unit cell size with one electron in each, the
ruler’s length is

LR=N (N) = a0N

√

1− 6

π2
≈ 0.63a0N. (10.3)

Thus, chopping the ruler into the smallest possible segments and re-
combining them makes the ruler over a third shorter than its mono-
lithic form. Using the classical assumption that the length remains
constant under such an operation would lead to an overestimate of
the length of the object that is being measured.

An interesting artifact of chopping a rod into segments is that
the process leads to a change in the energy of the rod. The ground
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state energy of the rod with fully delocalized electrons is given by

EG = 2

N/2
∑

n=1

h2n2

8mN2a20
=
h2(N + 2)(N + 1)N

96mN2a20
. (10.4)

The ground state energy of the R segments after cutting is given by

E′
G = 2R

N/2R
∑

n=1

h2R2n2

8mN2a20
=
h2(N + 2R)(N +R)N

96mN2a20
. (10.5)

The reader can easily verify that in the limiting case where R = 1, the
ruler is whole and Equation 10.5 is the same as Equation 10.4. If the
ruler is cut into its smallest possible parts, R = N and E′

G/EG = 6
when N → ∞. Thus, the net amount of work done in cutting up the
ruler is five times the ground state energy of the single rod.

10.2 Ruler Reliability

Next we consider a user of a ruler who assumes that its length is
independent of the number of subdivisions, as would be the case
within the realm of common experience. As long as the classical
limit is maintained, the precision of the measurement increases as
more rulings are made. Since the object being measured is large and
behaves classically, it’s edges are sharp and can be located to within
one division, or L/R, the spacing between markings. However, as
the rulings are made closer together and quantum effects take hold,
the systematic overestimate of the object’s length grows.

The length measurement is most true when the increase in reso-
lution from making smaller segments is offset by the greater overesti-
mate of the object’s length – the condition given by Na0−LR(N) =
Na0/R. Using Equation 10.2, this condition gives,

1−

√

√

√

√1− 12

π2
· R
N

·
N/2R
∑

n=1

1

n2
=

1

R
. (10.6)

If R/N is small, the second term under the square root in Equation
10.6 is necessarily small. Since the sum converges to π6/6 for an
infinite number of terms, the second term can be approximated by
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this value is 2R/N ≪ 1. Then, the square root can be expanded in
a series with R/N small, giving the condition

R =
√
N =

√

L/a0.

Ideal Number of Rulings

for Maximum Accuracy

∆L =
L

R
=
√

a0L

Optimum Size of Rulings

(10.7)

Thus, for a ruler of 10 cm length made of a material with lattice
constant a0 = 1Å, the most accurate resolution is for 3µm rulings.

These results may seem suspicious given that optical microscopes
have a resolution of 1 µm and electron microscopes are much better
than that. The reason is that here we are dealing with a single line of
atoms. Most objects are much thicker than that, so ones gets added
precisions from the statistics of adding together many side-by-side
rulers.

10.3 Classical Versus Quantum Parsing

We have calculated the length of a single ruler and of the individ-
ual sections quantum mechanically. However, when combining the
sections, we are using the classical notion of the length, that is, the
ruler length is taken to be the sum of the pieces. This requires that
two issues be resolved. First, the assumption that the ruler segments
can be stacked as if each piece is of the calculated quantum length
leads to an overlap in the wave functions between them. This is of no
consequence if the electrons are noninteracting, as we have assumed
from the start. A second more interesting issue is that the classical
construction ignores the requirement that the ruler segments must
remain entangled.

To avoid undue complexity, we consider a ruler with N electrons
and N segments with one electron per segment. Then, in the global
ground state, each segment will also be found in it’s ground state. If
the single-particle ground statevector of the ith segment containing
one electron is designated by

∣

∣1(i)
〉

, the fully antisymmetric entangled
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state vector of the segmented ruler is given by

|G〉 = 1√
N

N
∑

i=1

∣

∣

∣1(i)
〉 ∣

∣

∣1(i)
〉

. (10.8)

The decomposition given by Equation 10.8 is analogous to Equa-
tion 4.11, but rather than forming an entanglement of single particle
states of different energies, the energies are the same and the entan-
glement is between the spatially-separated segments.

Using Equation 10.8 to get the probability density yields

ρ(x1) =

∣

∣

∣

∣

∣

1√
N

N
∑

i=1

〈

x1

∣

∣

∣ 1(i)
〉 ∣

∣

∣1(i)
〉

∣

∣

∣

∣

∣

2

=
1

N

N
∑

i=1

ρ
(i)
1 (x1), (10.9)

where ρ
(i)
1 (x1) is the probability density of segment i in its ground

state. Note the similarity between Equation 10.9 and Equation 4.12.
Equation 4.12 is the average density ofN particles in different energy
eigenstates of the same box, but Equation 10.9 is the average density
of one particle in each of N wells, all in the single-particle ground
states.

Proceeding with the length calculation in the usual way by sub-
stituting Equation 10.9 into Equation 2.6 yields

L2 =
12

N

N
∑

i=1

∫ +∞

−∞
dx
(

x2 − 〈x〉2
)

ρ
(i)
1 (x) (10.10)

The probability density can be expressed by a sum over the individ-
ual segments via

ρ1(x) =
1

N

N
∑

i=1

ρ
(i)
1 (x) =

1

N

N
∑

i=1

ρ
(1)
1 (x− (i− 1)L1) , (10.11)

where the second summation uses the fact that each segment is iden-
tical. Then, the probability density of each segment is equivalent to
the first one, but shifted by iL1 to get the contribution from the

ith one, i.e. ρ
(i)
1 (x) = ρ

(1)
1 (x− (i− 1)L1). This procedure is an im-

plementation of the classical notion that the full length is the sum
of its parts. However, we leave L1 arbitrary and solve for it self-
consistently by demanding that the full length L is given by NL1.
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This will test the classical notion of additivity assumed in Equations
10.1 and 10.2 are valid. But first we must evaluate the integral given
by Equation 10.10.

Consider the length formula given by Equation 5.7. The term
under the square root is the average of the length variance contribu-
tions from each of the occupied states. This procedure makes sense
for a monolithic object in which every electron is delocalized over
the full length of the object. Then, the probability density is the
average of the contributions from each state. This is precisely the
kind of probability density that is depicted in Figures 7.5, 7.6 and
7.7.

When the ruler is made by cutting a rod into segments, each
segment localizes electrons. The ground state configuration of the
system has each segment in its ground state. Figure 10.2 shows a

r1

r1(x)

(1) r1
(2) r1

(3) r1
(4) r1

(5)

x

Figure 10.2: The bottom curves show the probability density due to
each segment, with each plot offset slightly upwards for readability.
The dashed lines show the infinite well walls and the solid curve at
the top the system’s probability density.

reconstruction of the full density when the segments are placed end-
to-end with a spacing of L1. The density is then calculated using
Equation 10.11. Figure 10.2 is in essence representing the probability
density in the same way as in Figure 7.5, except the system is made
of segments, with each contributing to the probability density in
the local well as opposed to particles in different states of the same
larger well. We evaluate Equation 10.11 for the probability density
in Figure 10.2 as follows.
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First, we need to determine how to calculate the expectation of
a function f(x) for a probability density that is made of a sum of
functions shifted by L1 as shown in Figure 10.3. The expectation
values for two such pieces can be separated into integrals of three
separate regions as follows:

〈f(x)〉 =
∫ L1

0

f(x)ρ(x) dx

+

∫ a

L1

f(x) (ρ(x) + ρ(x− L1)) dx

+

∫ L1+a

a

f(x)ρ(x− L1) dx, (10.12)

where we have used the fact that the probability density ρ(x) is
non-vanishing only in the interval a. Combining the first line of
Equation 10.12 with the first term in parentheses of the second line,
and grouping the second term in parentheses of the second line with
the third line, yields

〈f(x)〉 =
∫ a

0

f(x)ρ(x) dx +

∫ L1+a

L1

f(x)ρ(x − L1) dx. (10.13)

x

L1

a

a

r(x)

r( )x-L1

r( ) ( )x + x-r L1

Figure 10.3: The function ρ(x) (long dashed curve), the shifted func-
tion ρ(x − L1) (solid curve), and the sum of the two (short dashed
curve).

We can now evaluate the length using Equation 2.6 by casting
Equation 10.11 in the form of Equation 10.13 with f(x) = x2−〈x〉2,
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which yields the square of the length

L2 =
12

N

N
∑

i=1

∫ (i−1)L1+a

(i−1)L1

dx
(

x2 − 〈x〉2
)

ρ
(1)
1

(

x− (i−1)L1

)

. (10.14)

Because the well is centrosymmetric, Equation 5.6 shows that the
expectation 〈x〉 of a segment is just the position of its center. For
the ith segment, the center position is given by 〈x〉i = L1(i−1)+a/2.
〈x〉 is thus given by

〈x〉 = 1

N

N
∑

i=1

∫ (i−1)L1+a

(i−1)L1

dxxρ
(1)
1

(

x− (i− 1)L1

)

=
1

N

N
∑

i=1

〈x〉i =
1

N

N
∑

i=1

(

L1(i − 1) + a/2
)

. (10.15)

Evaluating the sum yields

〈x〉 = (N − 1)L1 + a

2
. (10.16)

Equation 10.14 then becomes,

L2 =
12

N

N
∑

i=1

∫ (i−1)L1+a

(i−1)L1

dxx2ρ
(1)
1

(

x− (i− 1)L1

)

− 3
(

(N − 1)L1 + a
)2

≡ 12

N

N
∑

i=1

Ii − 3
(

(N − 1)L1 + a
)2
. (10.17)

To evaluate the integral Ii in Equation 10.17, we make the sub-
stitution y = x− (i− 1)L1, yielding

Ii =

∫ a

0

dy (y + (i− 1)L1)
2
ρ
(1)
1 (y)

=

∫ a

0

dy
(

y2 + 2y(i− 1)L1 + (i − 1)2L2
1

)

ρ
(1)
1 (y) . (10.18)

The first term in Equation 10.18 is evaluated using Equation 7.10
with n = 1. The second term can be evaluated using 〈y〉 = a/2 and
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the last term by noting that an integral over the probability density
is unity by virtue of normalization. Putting it all together, Equation
10.18 becomes

Ii = a2
(

1

3
− 1

2π2

)

+ a(i− 1)L1 + (i− 1)2L2
1. (10.19)

Next we group the terms in Equation 10.19 so as to yield a poly-
nomial in i, yielding

Ii =
[

L2
1

]

i2 +
[

aL1 − 2L2
1

]

i

+

[

a2
(

1

3
− 1

2π2

)

+ L2
1 − aL1

]

, (10.20)

where the terms in brackets are the coefficients. Using
∑N

i=1 1 = N ,
∑N

i=1 i = N(N + 1)/2 and

N
∑

i=1

i2 = N(N + 1)(2N + 1)/6, (10.21)

after some algebra, Equation 10.19 sums to

1

N

N
∑

i=1

Ii =

(

1

3
− 1

2π2

)

a2 +
N − 1

2
aL1

+
(2N − 1)(N − 1)

6
L2
1. (10.22)

Finally, substituting Equation 10.22 into Equation 10.17 yields

L2 =

(

1

3
− 1

2π2

)

a2 +
(

N2 − 1
)

L2
1. (10.23)

Recall that L1 – the yet-to-be determined length of the first seg-
ment – also prescribes the shift of each segment when combining the
pieces to make the ruler. Calling upon symmetry to demand that
each segment is of the same length and that the full length is thus
given by L = NL1, Equation 10.23 yields

N2L2
1 =

(

1

3
− 1

2π2

)

a2 +
(

N2 − 1
)

L2
1. (10.24)
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Solving Equation 10.24 for L1 yields

L1 = a

√

1

3
− 1

2π2
. (10.25)

Equation 10.25 is the length of a single particle in a box in the ground
state, as given by Equation 7.11. This shows that quantum parsing
acts in the way we would expect from classical arguments.

In conclusion, a ruler can be made by stacking individual pieces
with spacing given by the quantum length of each piece. While this
type of parsing appears to be a classical construct, the same result
is obtained through a self-consistent fully quantum calculation with
the requirement that the length is given by the number of segments
times the number of times they are shifted. The quantum nature
is evident from the length being shorter than the box size, but the
classical act of stacking the segments is consistent with the quantum
description.

10.4 Bosons

The same analysis applies to Bosons. Equation 8.4 gives the length
of a box filled with bosons in their ground state. With a = Na0, this
gives a length of

LN = a0N

√

1− 6

π2
. (10.26)

If the box is chopped into R pieces, the length of the individual pieces
will be given by Equation 8.4 with a = Na0/R, or

LN/R =
a0N

R

√

1− 6

π2
(10.27)

and the total length is LR = RLN/R, given by

LR = a0N

√

1− 6

π2
. (10.28)

Thus for bosons, chopping the ruler into pieces and recombining
them gives the same length, as is verified by the equality between
Equations 10.26 and 10.28.

Unlike the case of the fermion, where there is an ideal cutting
interval, the boson ruler becomes more reliable as it is cut into more
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sections. The length is always smaller than the size of the box that
defines the potential. Since the ruler is defined by the electron cloud,
this is the length that matters.

Finally, we calculate the ground state energy of the uniform ruler
and one made by chopping it into sections. The monolithic ruler
energy for each particle is simply the energy of a particle in a box of
length Na0, so the total energy is N times the single particle energy,
yielding

EG =
h2

8mNa20
. (10.29)

The ground state energy of each of the R segments is of the form of
Equation 10.29 with N → N/R, and the total energy is R times the
segment energy, yielding

E′
G =

h2R2

8mNa20
. (10.30)

Thus, the energy grows quadratically with the number of segments,
requiring substantial work in producing each slice. Thus, increased
accuracy comes at a cost of increased energy.

Finally, we note that the boson system can be placed into a su-
perposition with two particles per state to mimic the ground state
fermion system, albeit with all positive signs upon particle exchange.
In this configuration, the signs are irrelevant, leading to the same re-
sults obtained for fermions. Thus, bosons can be manipulated into
many more configurations of energy equal to or less than the fermion
ground state energy, leading to a richer set of possibilities. We leave
these configurations for future study.

10.5 Entanglement of Ruler and Object

The electrons in a ruler and the object being measured are entangled
because the exchange of any two electrons changes the sign of the
joint wave function. This section expresses the quantum state of the
ruler and object as a jointly entangled wave function to determine
the consequences.

For N noninteracting particles in a box of length Na0, where a0
is the length of the unit cell and contains one electron, the energy of
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Figure 10.4: The object and ruler segment as an entangled quantum
system.

single-particle state n is

En =
π2h̄2n2

2ma20N
2
. (10.31)

The Fermi energy for a box with an even number of electrons is
calculated from Equation 10.31 with n = N/2, yielding

Ef =
π2h̄2

8ma20
. (10.32)

Equation 10.32 shows that the Fermi energy is independent of the
size of the box since an electron is added with each unit cell. Figure
10.4 shows an object and a ruler that are made of the same material
so the unit cells in each are the same size. Since the ruler segment
is smaller than the object, its ground state energy Er

0 is higher than
that of the object. Furthermore, the energy levels of the object are
more densely spaced than in the ruler. We have arbitrarily chosen a
ruler with 4 electrons and an object with 10 electrons for illustration.

Since the state vector of the 14-electron composite system must
be antisymmetric upon interchange of any two of them, the electrons
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in a universe made of only the ruler and the object are necessarily
entangled, independent of the distance between them. As such, we
will express the state vector of the combined system as

|Ψ〉 = |1, 2, . . . , 10, 1′, . . . 4′〉

=
1√
14

(

10
∑

n=1

|n〉 |n〉+
4
∑

n′=1

|n′〉 |n′〉
)

, (10.33)

where the primes indicate the state number of the ruler and the
unprimed ones the state index of the object. The barred index refers
to the state that excludes that state and is the fully anisymmetrized
one of all other state indices of both the ruler and the object.

Up to this point we have assumed that the object and ruler can
be placed side by side and the measurement made by eye. When the
objects are made smaller they can be viewed under a microscope.
The comparison between ruler and object is essentially made with a
scattering experiment, where the scattered light is measured by eye
or with an instrument. At ever smaller sizes, shorter wavelengths of
the electromagnetic spectrum can be used as well as particle beams.

With enough spatial resolution, the object and the ruler appear
separate because the electron distribution is confined to one box or
the other even though the electrons are entangled. An image of the
ruler is obtained from the probability density |〈x′ |Ψ〉|2, which is
defined by

ρ(x′) = |〈x′ |Ψ〉|2 =

∣

∣

∣

∣

∣

1√
4

4
∑

n′=1

〈x′ |n′〉 |n′〉
∣

∣

∣

∣

∣

2

=
1

4

4
∑

n′=1

|〈x′ |n′〉|2 , (10.34)

where we use the fact that 〈x′ |n〉 |n〉 = 0. This is so because the
position state vector of the ruler, indicated with a prime, is in an or-
thogonal space to the object’s state vector. Note that the probability
density needs to be renormalized when calculating the length from
this subsystem. This primed part of the state vector is experimen-
tally probed by blocking the object so that light scatters only from
the ruler. Alteratively, the light can be focused onto only the ruler.
Thus, the probability density given by Equation 10.34 will yield the
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length of the ruler. The same process can be applied to the object,
and the two compared. Clearly, the ruler can be eliminated and the
illuminated pixels of the camera used as the segments of a ruler to
characterize the object’s size. Then, the electrons in the pixels and
the object are entangled. The fact that the two objects are entangled
does not lead to any weirdness in that spatial distinguishably holds
because the probability density of each will be well separated from
the other as long as the distance between objects is more than a unit
cell.

Things become more interesting when the ruler and object are
made of different materials, making it possible for the unit cell size in
each to be different. Let the lattice spacings of the ruler and object
be b0 and a0. For the rest of the discussion, we assume that when
the object and ruler are well separated, the object has 10 electrons
and the ruler has 4 electrons as in Figure 10.4.

With different lattice constants, the fermi energies are unequal as
are the single-particle ground state energies. The diagram in Table
10.1a shows an example of the case when the unit cell of the ruler
is smaller than that of the object. The horizontal dashed lines show
the lowest-energy single-particle state and the occupied state at the
fermi energy. The shaded parts represent all of the discrete occupied
states in between these two extremes.

The lowest unoccupied state energy of the object Eo
l is given by

Equation 10.31 with n = 6, yielding

Eo
l =

9π2h̄2

50ma20
. (10.35)

The Fermi energy of the ruler Er
f , given by Equation 10.32 with

lattice spacing b0 will match the highest unoccupied state energy Eo
l

given by Equation 10.35 when

Er
f = Eo

l ⇒ 9π2h̄2

50ma20
=
π2h̄2

8mb20
, (10.36)

or

a0
b0

=
6

5
. (10.37)

The energy-level diagram in Table 10.1a is for a ratio that is slightly
larger than a0

b0
= 6

5 .
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Case I
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(a) (b)

Table 10.1: Energy level diagram of an object and ruler segment.
The gray shaded areas represent the occupied states. (a) A ruler
with fermi energy Er

f that is above the highest unoccupied state
energy of the object, Eo

l , is not in it’s true ground state. (b) The
two electrons at the fermi level of the ruler shown in Table 10.1a de-
excite into the lowest unoccupied state of the object, leading to the
true ground state of the system. The rows below the figures show,
from top to bottom, the ratio of the lattice constant of the object
and ruler a0/b0, the ratio of the number of lattice periods of the
object to the number of lattice periods of the ruler N0/Nr, the ratio
of the classical lengths N0ao/Nrb0, and the ratio of the quantum
lengths calculated from Equation 7.13. n in the subscript of Lo

n is
the number of electrons in the object and Lr

n the number of electrons
in the ruling. Note that the lattice spacing does not change when an
electron jumps from the ruler to the object because the nuclei that
define the potential are assumed to remain fixed.
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Case II
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Table 10.2: Energy level diagram of an object and ruler segment
in the same form as Table 10.1. (c) All four electrons in the ruler
segment are above the two lowest unoccupied states of the object.
(d) In the lowest energy configuration of the system shown in Table
10.2c, all of the electrons leave the ruler, rendering it invisible.
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When b0 < 5a0/6, the Fermi energy of the ruler is higher than the
lowest-energy unoccupied state of the object. In this situation, the
entangled ruler/object system is in an excited state. If the electrons
are noninteracting as assumed from the start, a system so prepared
will remain in this excited state. However, a weak perturbation that
couples the two can cause the two electrons at the Fermi level of
the ruler to jump to the object. As a result, the object will become
longer and the ruler will become shorter, as depicted in Table 10.1b.
If the nuclei, which define the potential remain fixed, the lattice
constant and therefore the well size stays the same. In reality, the
lengths change because molecular bonds originate in the electron
clouds, complications which we ignore here.

Before we proceed, it is worthwhile to dwell on the strangeness
of this state of affairs. Viewing an object and ruler as each being
electrically neutral and independent of the other places the system
as a whole in an excited state. Thus, our classical world being made
of many objects, is in a highly-excited state. When the objects are
brought together, the interactions will cause them to de-excite and
emit photons. However, these energy differences are small compared
to the composite energy, so the effect is not obvious unless the rulers
and objects become small.

The numbers in Table 10.1 summarize the results that follow.
No and Nr are the number of unit cells that form the object and
the ruler. The classical size is given by the number of unit cells
times the unit cell size, which is given by the width of the box. The
ruler determines the length of the object by counting the number of
segments placed end-to-end across the object. In the classical case,
this ratio is Noa0

Nrb0
= 3. Thus, we would say that the object size is

three ruler segments.

The quantum length of the object before the electrons transfer
to the object is given by Equation 7.13 with N = 10 and lattice
constant a0, and the ruler length is given by Equation 7.13 with
N = 4 and lattice constant b0 yielding the ratio Lo

10/L
r
4 = 3.45. In

the quantum case, the object is said to be 3.45 units in length.

After the system relaxes into its ground state, the object has 12
electrons and the ruler has 2, as shown in Table 10.1b. As a result,
the object’s Fermi energy has increased and the ruler’s Fermi energy
has decreased. The quantum lengths of the ruler and the object have
both changed, resulting in the conclusion that the object’s length is
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4.41 units. Thus, there are several quantum effects at play. First,
the quantum length and classical length are different. Secondly, the
length determined from a standard measurement is affected by the
fact that the electron and ruler are not independent systems, and
that they share electrons. As a result, both the object and the ruler
can change length.

What configuration is being characterized by the measurement?
Is it the one in which the ruler and the object are independent, or
the one in which electrons are exchanged? Electron transfer can in
principle be verified with the detection of emitted photons of energy
h̄ω given by the difference between the Fermi energies, or h̄ω =
Er

f −E0
f . Though not discussed here, the emission of a single photon

of this energy is a signal that only one electron is exchanged, so
the ruler and object would each have an odd number of electrons,
yielding yet a different measure of the length.

An even more peculiar configuration is one in which all of the
energy levels of the ruler are above vacant states of the object. Table
10.1c show the case where the lowest-energy occupied state of the
ruler is above the lowest unoccupied state of the object, or Er

0 > Eo
l ;

and, the ruler’s Fermi energy is above the second unoccupied state
of the object, or Er

f > Eo′

l . The classical length of the object is
6 ruler units before the electrons are exchanged, and the quantum
length is 6.91 ruler units. However, once the electrons are exchanged,
the ruler disappears because there are no longer any electrons in the
segment.

In a real system, the material is held together by bonds that are
mediated by interactions between the electrons and the nuclei. If all
electrons were to leave the ruler, it would fly apart. The configura-
tions of real materials do not have the required energetics for this
to happen, nor are the lattice constants independent of the number
of electrons. However, the model systems presented here do not vi-
olate any quantum principles, illustrating the bizarre consequences
of measuring length and the classical notion that the length is an
additive inviolable property.

Other examples can be contrived. For example, electrons can
be made to transfer to the ruler from the object, leading to the
evaporation of the object in the process of its length being measured.
Of course, a ruler with markings that are septated by larger intervals
than the object size makes for a useless ruler. In the quantum realm,
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there is no distinction between the ruler and the object, and the two
remain entangled through the electrons from which they are made
and through which we detect them.



Chapter 11

Conclusion

This book started by defining the quantum length under the con-
dition that it be consistent with the classical length in the many-
electron limit. This definition was used to study the length of a par-
ticle in a box, which yields the expected uniform density and sharp
edges for many electrons. The Harmonic oscillator yields a length
that is proportional to the distance between the classical turning
points. In contrast, the length calculation for a coherent state yields
the width of the wave packet, whose excursions sweep out the region
between the turning points.

With these fundamentals established, the length calculation was
applied to bosons, showing that the upper limit of the resulting
length goes well beyond the size of the box – an intuitively unex-
pected result. Furthermore, the ground state of a boson ruler does
not approach uniform density with sharp edges in the classical unit;
but, it is possible to construct a particular superposition that has
that property. There is no reason to believe that our experience
with ordinary matter, whose properties are dominated by fermions
and the statistics that they follow, would inform us of how a ruler
made of bosons would act.

Classical reasoning would lead us to conclude that rulers become
more precise when the gradations are made smaller. This is true
unless quantum effects become important, at which point the length
of the ruler made of slices is shorter than the original monolithic
one. Thus, the length is not the sum of its classically-determined
parts, though additivity of the quantum lengths holds. In such finely
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graded rules, quantum corrections need to be taken into account to
get the object’s length. This interplay between increasing resolution
of the ruler and the onset of nonadditivity of the classical quantities
leads to an optimum number of ruler parsings, equal to the square
root of the number of unit cells from which the ruler is constructed.
Since slicing the ruler takes work, the increased accuracy comes at
an energy cost.

The length definition has its origins at the quantum level, so
the upper bound of an object’s length can be determined from the
number of electrons and the energy difference between the two-lowest
eigen energies. This purely quantum-derived limit survives in the
classical realm, though it probably overestimates the length to a
larger degree.

There are no weird consequences arising from the entanglement
of electrons that are shared by the ruler and the object to be mea-
sured when they are made of the same material. Then, the occupied
states in the ruler and in the object are no different than if the two
were unentangled objects, thus agreeing with the classical picture of
distinct objects. However, if the two are made of different materi-
als with differing unit cell sizes, the Fermi energies no longer match.
When the size of the ruler segment is small enough to bring its Fermi
energy above the energy of the lowest unoccupied state of the ob-
ject, an electron can jump from the ruler to the object, affecting the
length of each, changing the nature of the measurement and making
the result ill-defined. In the extreme case of large unit-cell size mis-
match, all of the electrons can jump from the ruler to the object, in
essence causing it to disappear since the electrons with which light
interacts are absent. The ruler and object can be reversed to make
electrons jump to the ruler, leading to similar weirdness. However,
in this case, the rulings in the ruler would be larger than the size of
the object – not a useful ruler.

Table 11 shows a summary of all the various lengths for Fermions
and Bosons in boxes and harmonic potentials, the length limit for a
box spectrum and harmonic oscillator spectrum. The classical limit
can be determined by taking N → ∞.

When we think of observables such as position and momentum,
they are characterized by points. In contrast, we saw that the length
is given by the spread in the probability density, which in turn is re-
lated to the uncertainty range of the position. Classically, we think of
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the length as the distance between two points at an objects ends. In
the classical limit, both of these views are seen to converge. However,
the spread of the wave function is the more rigourous definition.

Central to the classical definition of size is one-to-one correspon-
dence between the segments of a ruler and points on the object. Such
correspondence between the two assumes that numbers are agnostic
with regards to the composition of the objects that they are quan-
tifying. In the quantum realm, the composition of the material can
affect the measurement of its length. Furthermore, on small enough
scales, objects are no longer distinct. This suggests that one-to-one
correspondence is a classical approximation that holds on human size
scales, but requires a more nuanced analysis when an object is made
of only a few electrons.

Counting is the basis of mathematics, so it is amazing that the
quantum realm – where one-to-one correspondence is ill-defined – is
so well described by a theory based on counting. This narrative has
shown when size is a useful focus for studying one-to-one correspon-
dence and when it becomes murky.

The quantum definition of length has no affect on our day to
day interactions with the world, but enriches our imagination as
we struggle to understand the subtleties of nature and attempt to
reconcile our findings with intuition.
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Table 11.1: Summary of lengths and limits for fermions and bosons in textbook potentials.



Appendix A

The Sum Rules

The sum rules are derived from the commutator [x, [x,H ]], where x
is the position operator and H the Hamiltonian. The commutator is
evaluated directly using the fact that for a mechanical Hamiltonian

[x,H ] =
[

x, p2

2m

]

= ih̄ p
m , which yields

[x, [x,H ]] = − h̄
2

m
, (A.1)

wherem is the mass of the particle. Usually the particle is an electron
in an atom, molecule, crystal or nanostructure.

The commutator can be explicitly expressed as

[x, [x,H ]] = x2H +Hx2 − 2xHx. (A.2)

Setting Equations A.1 and A.2 equal to each other, and taking the
expectation with respect to the ground state energy eigenket |1〉
yields

〈1|x2 |1〉E1 + E1 〈1|x2 |1〉 − 2 〈1|xHx |1〉 = − h̄
2

m
, (A.3)

where we have used H |1〉 = E1 |1〉.
Inserting closure, given by Equation 6.3, between each pair of

position operators x in the three terms of Equation A.3 and collecting
like terms yields

∑

n

〈1|x |n〉 〈n|x |1〉 (En − E1) =
h̄2

2m
, (A.4)
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where |n〉 is an energy eigenstate with H |n〉 = En |n〉.
To treat a system with N electrons, we calculate [X, [X,H ]], with

Equation 6.7 defining X and the commutator [X,H ] given by

[X,H ] =

[

X,
N
∑

i=1

p2i
2m

]

=
1

2m

N
∑

i=1

[

xi, p
2
i

]

= ih̄
N
∑

i=1

pi
m
, (A.5)

where pi is the momentum operator of the ith electron.
Using Equation A.5, the double commutator becomes

[X, [X,H ]] = i
h̄

m

N
∑

i=1

[xi, pi] = −Nh̄
2

m
. (A.6)

The sum rules are calculated following the same procedure as in the
one-electron case, yielding

∑

n

〈1|X |n〉 〈n|X |1〉 (En − E1) =
Nh̄2

2m
. (A.7)

Equation A.7 is the general result for a system of N electrons and
since it is calculated without approximation, it must hold far any
quantum system made of a collection of particles governed by a me-
chanical Hamiltonian coupled to electromagnetic fields.[12]
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lektronen, die einem stationären Zustand zugeordnet sind,” Z.
Physik 34, 879 (1925).

[9] M. Kac, “Can One Hear the Shape of a Drum?” Mathematical
Monthly 73, 1–23 (1966).

[10] E. M. Landau, L. D. & Lifshitz, Statistical Physics (Pergamon
Press, 1969), second revised english edition edn.

75



76 BIBLIOGRAPHY

[11] E. Schrödinger, Naturwiss. 14, 664 (1926).

[12] M. G. Kuzyk, J. Perez-Moreno, and S. Shafei, “Sum Rules and
Scaling in Nonlinear Optics,” Phys. Rep 529, 297–398 (2013).


	Dedication
	Preface
	Introduction
	Classical Length
	Single-Particle Length
	Many-Particle Systems
	Wave Functions
	Many-Particle Matrix Elements

	Quantum Length
	Upper Bound of Length
	Applications
	Particle in a Box
	Fundamental Limit
	Actual Quantum Length
	Electron Density

	Harmonic Oscillator
	Length Limit
	Actual Quantum Length
	Electron Density


	Bosons
	Coherent States
	Discussion
	Rulers
	Ruler Reliability
	Classical Versus Quantum Parsing
	Bosons
	Entanglement of Ruler and Object

	Conclusion
	The Sum Rules

