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The search for new materials with ever-larger nonlinear-optical susceptibility is fueled by the promise of new
applications. While much progress has been made, no new paradigms have been discovered that lead to signifi-
cantly larger nonlinear susceptibilities when size has been taken into account. The next breakthrough requires a
step back to consider the fundamental requirements for increasing the strength of light–matter interactions. In
essence, the problem at hand is to understand how to get the most out of a system of fixed size (defined as the
spread in the electronic wave function) that contains a given number of electrons. The intrinsic nonlinearity takes
into account size so that the origin of what makes a large nonlinear response can be identified. Only then can a
recipe be articulated for making the system larger in a way that scales optimally so that ultralarge nonlinear
susceptibilities can become a reality. © 2016 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.4400) Nonlinear optics, materials.
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1. INTRODUCTION

Matter is essentially a localized collection of bound electrons.
Optimizing the nonlinear-optical response of a quantum sys-
tem comes down to using a fixed number of electrons as effi-
ciently as permitted by the laws of physics. The most effective
way to use electrons often depends on the size of the system. As
such, making the ultimate nonlinear-optical material requires
an understanding of how the nonlinear response scales with
a quantum system’s size. Finally, one must determine how
to assemble the units together to make a bulk material.

A large nonlinear-optical response is certainly a common re-
quirement of many devices. However, perhaps the most serious
impediment to the development of exceptional new materials is
the focus on the magnitude of the nonlinear-optical response
without taking into account the size of the system. This
approach masks the fundamental properties responsible, thus
hampering the development of an understanding of what
makes a material’s nonlinear susceptibility ultralarge.

Some authors have attempted to take the size into account
by normalizing the nonlinear response to the number of elec-
trons or the size of the molecule from its chemical structure [1].
However, these metrics alone are not representative of the true
size of the system. A more rigorous approach is to define a
quantum size in terms of a system’s wave function and number
of electrons. This size can then be applied to develop a guide for
how the nonlinear susceptibilities should scale for ideal materi-
als. One approach to removing size effects is by defining an
intrinsic nonlinearity, which provides an absolute metric of

the nonlinear-optical efficiency. This makes possible a direct
comparison between quantum systems of differing sizes, thus
allowing the important factors leading to a large nonlinear-
optical response to be isolated and identified. We will refer
to the basic quantum unit as a “molecule,” though it could
be a metal particle or a complex nanostructure.

The best molecules have intrinsic nonlinear susceptibilities—
defined as the nonlinearity normalized to the nonlinearity of an
ideal molecule of the same size—that remain large when their
size is increased by adding atoms. If the intrinsic nonlinearity
is constant with molecular size (recall that the nonlinearity of
each molecule is normalized to the nonlinearity of the ideal
molecule of the same size), the absolute nonlinearity will grow
as a power law of the size, making it possible to attain ultralarge
absolute nonlinearities with modest size increase. For example,
we will see that the third-order susceptibility scales as L7, where
L is the molecular length. Thus, a molecule whose intrinsic
second hyperpolarizability γ is size independent will have an
absolute second hyperpolarizability that is 107 times larger than
a molecule of one tenth the length. The highest-order power laws
observed to date in molecules fall well below this rate [2–4], so
there is lots of room for improvement.

A comparison of intrinsic nonlinearities of a set of molecules
that are related to each other through small changes in a struc-
tural feature, such as the placement of a molecular group along
a chain or by adding unit cells to a chain, can be used to identify
the critical properties for attaining a large nonlinear-optical
response [5].
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Once the basic quantum units of large nonlinearity are
found, they need to be built into a material. Properties that
can be varied at the microscopic and macroscopic scales include
geometry, topology, potential energy profile, and composition.
This brings up the concept of hierarchies, where the require-
ments of the microscopic units may differ from the assembled
system.

The transition from quantum to classical behavior when a
system is made larger has not been studied in the context of
optimizing the nonlinear-optical response. It has been reported
that at room temperature, silver spheres undergo a transition
characterized by bulk states, as predicted by quantummechanics,
and surface states that are characteristic of surface plasmons, as
described by classical electrodynamics [6]. Because the largest
possible nonlinear response that originates in quantum excitations
is much larger than the largest possible nonlinearity originating in
a classical phenomena, the ideal system is one that is made of
microscopic units whose sizes fall just below the classical thresh-
old, and the units are arranged in a way that optimizes the bulk
response. A potentially fruitful approach that has been mostly
neglected by the nonlinear-optics community is a search for
methods to prevent classical behavior by isolating molecules from
the environment or working at low temperature.

Nonlinearity is not always the most important property.
Applications demand that several material parameters be
optimized together. For example, electro-optic devices require
large second-order susceptibility, low loss, and low dielectric
constant. To take into account multiple factors, a figure of
merit (FOM) can be defined. Since all phenomena ultimately
originate in the quantum world, the quantities on which the
FOM depend are not independent but are functions of quan-
tum parameters that are calculated from wave functions and
energy spectra.

This paper outlines a path to make materials with ultralarge
nonlinear susceptibilities, starting with a discussion of the
meaning of length, how it applies to molecules, and how it leads
to scaling laws of the nonlinear-optical response. These scaling
laws are shown to be taken into account by defining intrinsic
properties. Classical and quantum systems are rigorously ana-
lyzed to show that quantum mechanics provides the winning
recipe, and the scaling of 1D and 3D systems is considered to
show that a one-dimensional system is ideal. Using the electric
dipole approximation, the optimal configuration of a bulk
material is proposed based on scaling arguments provided from
limit theory. The same can be done in the magnetic dipole
approximation, which can be generalized to higher-order elec-
tric and magnetic moments.

2. DISCUSSION

This section defines size and scaling and shows how it applies to
the nonlinear-optical response.

A. Size and Scaling

The concept of size is a classical one. Here we develop a rig-
orous quantum definition that enables us to apply it to how the
nonlinear-optical susceptibilities depend on size and how size
can be taken into account.

A naive definition of the length is the distance between the
boundaries beyond which no electron density is found. Using
this definition, the stick figures used by chemists to represent
molecules can be used to determine this length.

Since the electron density never drops to zero, a better def-
inition is the root mean square deviation

L2 ∼ Δx2 � hx2i − hxi2 �
X
n≠0

x0nxn0; (1)

where x is the aggregate position operator defined by

x �
XNel

k

xk; (2)

Nel is the number of electrons, xk is the position of electron k,
xn0 is the �n; 0�matrix element of x, and the expectation values
are of the operators in the ground state. Note that Eq. (2) is
proportional to the total dipole moment.

Equation (1) gives the square of the length in terms of
the electron density, which contains a position operator that is
derived from the sum over all of the electrons according to
Eq. (1). This length will not necessarily be the same as the size
of the stick figure if the charge density accumulates in a small
part of the molecule.

Deciding which electrons to count is not a simple task [7,8].
Some of the electrons in a molecule are near the nuclei so are
immobile while others serve the purpose of holding the molecule
together. A small fraction of the electrons move when excited by
light. When studying light–matter interactions, the electrons of
interest are the ones that interact with light. In organic mole-
cules, these are often the π electrons. A large response requires
that the molecule have many such mobile electrons.

We can determine the upper bounds of the length using the
sum rules [9–11]X∞

n�1

h0jxjnihnjxj0iEn0 �
ℏ2Nel

2m
; (3)

where Nel is the number of electrons, m is the electron mass,
and En0 � En − E0 is the energy difference between states n
and 0. Through simple manipulation, the sum rules yieldX∞

n�1

x0nxn0En0 ≥
X∞
n�1

x0nxn0E10 � E10L2: (4)

Equations (3) and (4) can be used to get the upper limit of
the length, which is given by

L2max � ℏ2Nel∕2mE10: (5)

Thus, there are three lengths: the length of the stick model
of the molecule, the quantum length defined by Eq. (1), and
the length limit given by Eq. (5). In order to gain an appreci-
ation for the quantum definition of length, we need to first
determine how the sum rules are affected by a rescaling of
the length by a factor ξ. The position operator must scale in
the same way, so we make the transformation x → ξx. The
sum rules, given by Eq. (3), remain invariant only when the
Hamiltonian, and thus the energies, are rescaled according
to E → E∕ξ2. This makes sense since a larger molecule typi-
cally has a lower energy. One can trivially verify this for a
particle-in-a-box model of an electron.
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As we see in Eq. (5), the length also depends on the number
of electrons. Thus, we define the simple scaling transformation
to be of the form

Simple Scaling Transformation :

8<
:

xpn → ξxpn;
N el → ηN el ;
Epn →

η
ξ2
Epn;

(6)

which leaves the sum rules unchanged. Note that the simple
scaling transformation, when applied to Eq. (5), yields
Lmax → ξLmax. Thus, simple scaling is the operation of making
a quantum system larger.

We are now equipped to understand how simple scaling, the
act of making the molecule larger while preserving the sum
rules, affects the nonlinear-optical response. Recall that the
zero-frequency polarizability α is given by the sum-over-states
expression

α � 2e2
X
p

jx0pj2
Ep0

: (7)

To determine the upper bound of α, we express it as

α � 2e2
X
p

Epojx0pj2
E2
p0

≤
2e2

E2
10

X
p

Ep0jx0pj2: (8)

Since the term on the right-hand side is just the sum rule, we
get the upper bound with the help of Eq. (3), or

αmax �
e2ℏ2

m
·
Nel

E2
10

� 2e2
jxmaxj2
E10

; (9)

where we have expressed the limit in two different ways. Note
that xmax is the largest possible transition moment to the first
excited state, which is also the quantum length given by Eq. (1).

Upon simple scaling, the polarizability scales as

α →
ξ4

η
· α: (10)

If we imagine adding unit cells to build a molecule, the length
will grow with the number of electrons added, or η ∝ ξ. As
such, the polarizability will scale as the volume of the molecule.
This is not surprising given that the polarizability has units of
volume.

To remove the affects of simple scaling, it is convenient to
divide the polarizability of a molecule by the limit to determine
its intrinsic polarizability, or

αint �
α

αmax

: (11)

The intrinsic polarizability is less than unity and is invariant to
simple scaling, so it is an absolute measure of the polarizability;
the closer to unity, the better the molecule. As such, the intrin-
sic polarizability is a convenient way of comparing different
molecules, regardless of size. Thus, if one were interested in
optimizing the polarizability, one would find a molecule with
an intrinsic polarizability near unity. If the molecule is made
larger in a way that leaves the intrinsic polarizability constant,
the absolute polarizability would increase in proportion to
the size.

The same arguments can be applied to the nonlinear suscep-
tibilities. To design the best molecule, one would search first

for candidates with the largest intrinsic values. Then, one
would make larger versions of the same molecule by adding
unit cells. The target would be systems whose intrinsic nonli-
nearities remain constant with size because the resulting non-
linearity would grow as a power law, making huge nonlinearity
possible.

B. Classical versus Quantum Nonlinearity

The previous section implies that arbitrarily large nonlinearity
can be obtained by making an ever-larger molecule. However,
quantum systems transition to classical ones when made large
enough. This can arise when the energy spacing gets smaller
than thermal energies or other effects interfere with the coher-
ence of the wave function.

Scholl and coworkers have used transmission electron micro-
scope (TEM) imaging and monochromatic scanning TEM elec-
tron energy-loss spectroscopy to probe the transition between
quantum and classical behavior. Scholl’s group characterizes
approximately spherical silver nanoparticles as a function of
diameter from 20 nm down to 2 nm [6]. They find a substantial
deviation from classical predictions in this range, with a smooth
transition between the two, suggesting that this size range defines
the quantum/classical interface for the system studied.

Classical behavior is associated with loss of coherence, which
washes out interference. Since constructive interference yields
nonlinearities near the limit, classical systems will never be as good
as quantum ones in terms of most effectively using electrons.
Thus, a potentially fruitful research direction would focus on
understanding why systems transition to classical behavior with
the goal of making larger quantum systems. If interactions with
surrounding material is responsible, then isolating a molecule and
keeping it at low temperature might be a viable approach.

How classical effects reduce the nonlinearity can be illus-
trated by comparing a quantum system with a plasmonic one.
We start by considering the polarizability in one dimension in
the classical and quantum cases.

Figure 1(a) shows a schematic diagram of a slab of material
of thickness d , where the largest two faces each have an area A.
The thickness is much smaller than any other dimension in the
slab, so a uniform applied electric field yields a uniform electric
field inside. With dielectric constant ε (sometimes called the

Ein
EoutEout

A

d

(a)

+
+
+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-
-
-

(b)
Fig. 1. (a) An electric field applied perpendicular to a slab of thick-
ness d and area A. (b) The induced surface charge density,�σ, forms a
dipole moment. Note that throughout this paper, the electric field will
be along the dimension labeled d , independent of the area A, even
when

ffiffiffiffi
A

p
< d .
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relative permittivity), the electric field inside the slab can be
calculated from continuity of the normal component of the
electric displacement, yielding εE in � Eout. Figure 1(b) shows
the induced surface charge, which is given by

σ � 1

4π
�Eout − E in� �

�
ε − 1

4πε

�
Eout; (12)

where E � Eout is the incident field. Equation (12) gives the
induced dipole moment of magnitude p � qd � �σA�d , or

p � Ad
�
ε − 1

4πε

�
E: (13)

If the slab is much smaller than the wavelength of the in-
cident light, the static field approximation used here holds for
time-harmonic fields. As such, the polarizability is then given
by α�−ω;ω� � p�ω�∕E�ω�, or

α�−ω;ω� � Ad
�
ε�ω� − 1
4πε�ω�

�
; (14)

so it scales as the thickness of the slab. ε�ω� is usually calculated
with the classical Drude model.

To treat the quantum case, consider a particle in a one-
dimensional box of width d , as shown in Fig. 2. From this
point forward, the applied electric field will be along the dimen-
sion labeled d . With two electrons per state, the N -particle
ground state has all single-particle states occupied from n � 1
to n � Nel∕2. Then, the lowest excitation energy E10 is the en-
ergy difference between the highest occupied single-electron state
and the lowest unoccupied state energy, so it is given by

E10 �
π2ℏ2

2md 2

��
N el

2
� 1

�
2

−

�
Nel

2

�
2
�
� π2ℏ2

2md 2 �Nel � 1�:

(15)

With the number of electrons given by

Nel �
d
a0

(16)

(one electron per cubic box of edge a0), Eq. (15), with the help of
Eq. (16), becomes

E10 �
π2ℏ2

2md 2

�
d
a0

� 1

�
⇒

d→∞

π2ℏ2

2ma0d
: (17)

Note that Eq. (17) scales as 1∕d . Later, we will see that for the
three-dimensional box, where d is smaller than each of the two
transverse directions, the energy difference scales as 1∕

ffiffiffi
d

p
.

To determine the scaling of the limits of the polarizability,
we substitute Eqs. (16) and (17) into Eq. (9), which yields

αmax �
4a0me2

π4ℏ2
· d 3 � 4

π4
d 3; (18)

where we have assumed that a0 is the Bohr radius given by
a0 � ℏ2∕me2. Since α is related to the volume of the molecule,
it is not surprising that αmax scales as d 3.

We can imagine that a material is made of a continuum
where all molecules touch but otherwise do not interact.
While this may seem like an unrealistic assumption, this case
can be treated using local field models. The first-order suscep-
tibility, the macroscopic quantity given simply by the ratio of
the polarizability to the volume, is given by

χ�1�max � αmax

da20
� 4

π4
d 2

a20
: (19)

When far from resonances, the local field factors will change
these values by perhaps a factor of two [12]—an amount that
is of little consequence when describing order-of-magnitude
numbers and large-exponent scaling.

The same procedure for a particle-in-a-box wave function
can be applied to the hyperpolarizability and second hyperpo-
larizability. Using the fundamental limits

βmax �
ffiffiffi
34

p �
eℏffiffiffiffi
m

p
�

3

·
N 3∕2

el

E7∕2
10

(20)

and

γmax � 4

�
eℏffiffiffiffi
m

p
�

4

·
N 2

el

E5
10

; (21)

and using the same approach as for α, it is straightforward to
show that the hyperpolarizability and second hyperpolarizabil-
ity in the long-length limit scale according to

βmax �
27∕231∕4

π7
·
d 5

e
(22)

and

γmax �
27

π10
·
d 7

e2
: (23)

The second- and third-order susceptibilities are calculated by
dividing Eqs. (22) and (23) by the volume of the box, yielding

Infinite well,
width 2a0

Infinite well, width 6a0

e1

e2

E = e10 2-e1 E = e10 4-e3

e3

e4

(x)

(x)

(x)

(x)

First excited
state

(b)(a)

Unit Cell Electron
a0

a0

a0

d

(c)
Fig. 2. (a) Two electrons in a box of width 2a0. (b) When material
is added to the box along d , which is along the applied electric field,
the number of electrons grows with the width and the energy-level
spacing decreases. The energy eigenfunctions are plotted for the
single-particle state at the Fermi energy and the single-particle state
just above the Fermi energy. Note that the state energies associated
with the transverse quantum numbers are not shown. (c) The addition
of unit cells with an electron in each one.
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χ�2�max �
�
3 · 214

π28

�
1∕4

·
d 4

ea20
(24)

and

χ�3�max � 27

π10
·
d 6

e2a20
: (25)

C. Spatial Dimensionality

In the previous section, we treated the classical and quantum
cases in one dimension. In this section, we revisit the quantum
case in three dimensions. We will consider only the induced
dipole moment perpendicular to the large faces, the ramifica-
tions of which are discussed in Appendix A. This component
can be isolated by experimental design with an electric field that
is launched at the material with its polarization perpendicular to
the slab. As such, electric dipole transitions will be induced
without affecting the transverse parts of the wavefunction.

If the slab is made of a conductor, we can subdivide it into
cubes that each contribute one conduction electron. As the slab
is made larger by adding cubes, the number of electrons in-
creases in proportion to the volume but each energy eigenvalue
decreases. The energy, en;p;q , of the nth quantum number cor-
responding to the part of the wave function along the surface
normal and the pth and qth transverse quantum numbers of a
single particle in a box is given by

en;p;q �
π2ℏ2

2m

�
n2

d 2 �
p2

L21
� q2

L22

�
; (26)

where L1 and L2 are the two transverse dimensions of the box.
Assuming that the electrons do not interact with each other,

the single-particle states will be filled according to the Pauli
exclusion principle while taking into account the quantum
numbers of the transverse parts of the wave function. Since
the lateral dimensions are larger than the thickness of the slab,
the energy spacing of the transverse states will be more closely
packed than the perpendicular component. As such, for a given
quantum number n in Eq. (26), there will be many transverse
quantum numbers that make distinct states that need to be
filled before the next-higher energy eigenstate indexed by
n� 1 gets filled.

For an experiment that only excites the perpendicular com-
ponent, given by a change in only n, there will be many states
corresponding to pairs of p and q quantum numbers that re-
main unchanged. As such, these states will not contribute to the
optical response and so can be ignored. However, the determi-
nation of how many states are occupied still requires the
transverse states to be counted when determining the value
of n associated with the Fermi level. The net effect is that
few electrons participate in the excitations that contribute to
the nonlinear response. Appendix A describes the approach
for taking into account these quantum numbers.

Figure 2(a) shows a box of width 2a0, which holds two elec-
trons. When the box size is made bigger by adding more
material, for every additional length 2a0, two more electrons
will be added. In addition, the larger box will yield more closely
spaced energy levels. Figure 2(b) shows a box that is three times
wider than the one shown in Fig. 2(a). As such, its energy levels
are compressed accordingly.

In the two-electron box, the first excited state energy is cal-
culated by promoting one electron to the next higher state. This
yields E10 � e2 − e1 (ei represents the single-electron energy
and Ei the many-electron state energy). The six-electron box
yields E10 � e4 − e3. As such, the general case for a Fermi level
at state n yields

E10 � en�1 − en: (27)

Using the single-particle energy levels given by Eq. (26) with q
and p unchanged, E10 in the asymptotic limit—as described in
Appendix A by Eq. (A5)—is then given by

E10 �
π2ℏ2

2md 2

2
4
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d 2Nel

πL1L2

s
� 1

1
A2

−
2d 2Nel

πL1L2

3
5

� π2ℏ2

2md 2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8d 2Nel

πL1L2

s
� 1

1
A: (28)

Recall that the fundamental limit of the polarizability is
given by

αmax �
e2ℏ2

m
·
Nel

E2
10

; (29)

where Nel is the number of electrons, E10 the energy difference
between the ground and first excited state, and the others are
the usual constants. The energy difference can be calculated
using Eq. (27), and the number of electrons is given by

Nel �
L1L2d
a30

� L1
a0

·
L2
a0

·
d
a0

; (30)

where we use the fact that there is one electron per volume a30.
Thus, for large Nel , Eq. (28) with the help of Eq. (30) yields

E10 �
πℏ2

ma0

ffiffiffiffiffiffiffi
2π

a0d

s
�

ffiffiffi
2

p
π3∕2 ·

ℏ2

ma20
·

ffiffiffiffiffi
a0
d

r
: (31)

The last equality expresses the result in terms of the ratio of a0
and d and constants that are grouped together to give units of
energy.

The scaling of the polarizability for the 3D box is determined
by substituting Eqs. (30) and (31) into Eq. (29), yielding

αmax �
me2

2π3ℏ2 · Ad
2 � 1

2π3
· Ad

d
a0

; (32)

where we have used A � L1L2 and where a0 is the Bohr radius
given by a0 � ℏ2∕me2. The linear susceptibility is then given by
the polarizability divided by the volume, or

χ�1�max � 1

2π3
·
d
a0

. (33)

Table 1 summarizes the polarizabilities and first-order suscep-
tibilities of the quantum box in 1D and 3D and the classical box.

The nonlinear susceptibility limits are calculated in the same
way, yielding

βmax �
�

3

2 · π21

�
1∕4

·
A3∕2a20

e
·
�
d
a0

�
13∕4

(34)

and
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γmax �
1ffiffiffiffiffiffiffiffiffiffiffiffi

2 · π15
p ·

A2a30
e2

·
�
d
a0

�
9∕2

: (35)

Dividing the hyperpolarizabilities by the volume A · d yields
the bulk susceptibilities

χ�2�max �
�

3

2 · π21

�
1∕4

·
A1∕2a0

e
·
�
d
a0

�
9∕4

(36)

and

χ�3�max � 1ffiffiffiffiffiffiffiffiffiffiffiffi
2 · π15

p ·
Aa20
e2

·
�
d
a0

�
7∕2

: (37)

3. RESULTS AND DISCUSSION

Table 1 summarizes the scaling of the polarizabilities and first-
order susceptibilities for quantum 1D and 3D limits and
classical 3D plasmonic systems. The quantum 1D and 3D po-
larizabilities scale as the length of the system to the third and
second powers, while the classical system scales linearly with
length. More telling is the linear susceptibility, which is inde-
pendent of size in the classical system and scales as d 2 and d in
the quantum 1D and 3D cases. The last column shows the
linear susceptibilities for a transparent material with a refractive
index of n � 1.5. The quantum 1D system is clearly the best.

Table 2 summarizes the scaling of 1D and 3D quantum
systems. Again, the 1D case beats the 3D case in all orders
of nonlinearity and the higher orders scale more favorably with
length than the lower-order ones.

It is worthwhile to evaluate the scaling expressions calculated
here to get a sense of the magnitude of the nonlinear response that
may be attainable. Assuming that one can make a structure that
retains quantum coherence over a length of d � 100 Å
(d � 100a0), this one-dimensional nanoscale system—according
to Eq. (22)—will have β � 10−23 cm5 · statvolt−1. In compari-
son, the largest second-order susceptibility ever calculated is
β � 2.6 × 10−26 cm5 · statvolt−1 for a huge molecule made with

coupled porphyrins that has approximately the same number of
electrons as the nanorod calculated here [13].

A 3D system with the same number of electrons will necessarily
bemuch shorter since the transverse dimensionmust be larger than
the length. AssumingA � 100a20, then d � a0 and Eq. (34) gives
β � 6 × 10−31 cm5 · statvolt−1. The one-dimensional system thus
uses electrons much more effectively, yielding a hyperpolarizability
that is almost eight orders of magnitude larger than the 3D case.

The second-order susceptibility of the 100 Å linear system
is χ�2� � 0.1cm2 · statvolt−1 and the 3D case yields χ�2� �
6 × 10−9 cm2 · statvolt−1. In more familiar units, these are
χ�2��3×106 pm∕V and χ�2� � 6 × 10−2 pm∕V, respectively.
The very best materials are at χ�2� � 500 pm∕V [14]. Thus,
the best materials demonstrated to date fall far below what
is possible in a 1D system but exceed the maximum values
allowed in 3D systems.

The second hyperpolarizability and third-order susceptibil-
ities can be evaluated in the same way. Using Eqs. (23) and
(35), these yield γ � 6 × 10−27 cm7 · statcoul−2 and γ �
6 × 10−38 cm7 · statcoul−2, respectively. The best molecules
have γ � 5 × 10−32 cm7 · statcoul−2 [15]. As was the case for
the hyperpolarizability, the best molecule measured is larger
than the 3D limit but far short of the 1D limit—in this case,
by five orders of magnitude.

While the 100 Å systems have ultralarge nonlinear-optical
response, perhaps they can be made even larger. Consider, for
example, χ�3� of a 1D system. The third-order susceptibility scales
as d 6. If a molecule is made twice as long, χ�3� becomes almost
two orders of magnitude larger. If the molecule can be increased
in length by a factor of 10, χ�3� is enhanced a million-fold. The
bottleneck to extending the length is in the coherence of the wave
function. The values calculated above are in the gray region where
quantum coherence is lost, leading to classical behavior. Gaining a
better understanding of what determines the critical length could
be used to extend it. Even modest increases in the critical length
could lead to much larger nonlinear response.

4. CHEATING NATURE

All molecules measured and all quantum systems calculated fall
short of the fundamental limits. Perhaps there are clever ways to
construct a quantum system that might break the limits. For
example, decades ago, Birnboim and coworkers proposed that
local field enhancements could beef up the nonlinear response
by several orders of magnitude [16,17] and reported on optical
bistability experiments that showed enhancements in metals
coated with nonlinear-optical molecules [18].

In principle, the local field enhancement due to a surface
plasmon excited in a metal particle at the appropriate frequency

Table 1. Columns Represent αmax, the Volume of the Object, and an Expression for χ �1�a

αmax Volume χ �1� � αmax∕volume χ �1��d � 100a0;ε � 2.25�
Quantum 1D 4

π4
· aba0 · d

3⇒
a0≈ab

4
π4
· d 3 da20

4
π2 ·

d 2

a20
4 × 103

Quantum 3D 1
2π3 ·

A
a0
· d 2 Ad 1

2π2 ·
d
a0

5

Classical 3D Ad
�
ε�ω�−1
4πε�ω�

�
Ad ε�ω�−1

4πε�ω� 0.04

aThe last column represents χ�1� for an object of length 100a0 and for a relative permittivity of ε � 2.25, as is common for transparent materials in the visible part of
the spectrum.

Table 2. Scaling of the Fundamental Limits of Various
Orders of Nonlinearity as a Function of Length for a 1D
and 3D Box

Fundamental
Limits

1D Box
Scaling 3D Box Scaling

αmax
e2ℏ2

m · Nel
E2
10

4
π4
d 3 1

2π3 · Ad
d
a0

βmax

ffiffiffi
34

p �
eℏffiffiffi
m

p
�
3
·
N 3∕2

el

E7∕2
10

27∕231∕4

π7 · d
5

e

�
3

2·π21

�
1∕4

· A
3∕2a20
e ·

�
d
a0

�
13∕4

γmax 4
�

eℏffiffiffi
m

p
�
4
· N

2
el

E5
10

27

π10 ·
d 7

e2
1ffiffiffiffiffiffiffiffi
2·π15

p · A
2a30
e2 ·

�
d
a0

�
9∕2
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can enhance the electric field at the surface by two orders of
magnitude above the incident field strength. Since the radiation
induced through the second hyperpolarizability is proportional
to the fourth power of the electric field, the net enhancement of
a third-order process can be as high as 108. The nonlinear re-
sponse of a molecule whose nonlinear-optical response is a cou-
ple orders of magnitude below the limit will be significantly
higher than the limit when placed in the region of an intensified
electric field near a metal particle.

While the effective nonlinear-optical response can indeed
beat the limits in this way, the fallacy is in not including all
the electrons of the combined system. Since the surface plas-
mon resonance is a classical phenomenon, many electrons con-
tribute and the nonlinear response of the combined system is
well below the limit because the vast majority of the electrons
are not used effectively. Furthermore, the enhanced electric
field is found only at localized hot spots near the nanoparticle.
Consequently, the bulk material’s nonlinear response will be
low due to the low density of hot spots. Thus, it is far better
to make many quantum objects than a single quantum object
placed near a large particle that wastes electrons.

Another approach to breaking the limits is to use exotic
Hamiltonians. Atherton reported that Hamiltonians that are
not Hermitian but invariant under the combined action of time
reversal and parity [19] can break the limits [20]. There are no
known systems that behave according to such Hamiltonians.
However, a composite system made of many particles, such as
Bose–Einstein condensates, might behave in this way. While a
quasi-particle that is governed by an exotic Hamiltonian might
appear to break the limits, the system as a whole is well within
the upper bounds when all of the charges that make the quasi-
particle are counted. The important point here is that the full
system is still Hermitian, but a subsystem may act as if it were
non-Hermitian. If all electrons were counted, the limits would
not be broken. However, investigations of such systems might
lead to new insights that are applicable to finding new ways
to make materials with a larger intrinsic nonlinear response.

An example of how nature can be fooled to yield a large
intensity-dependent refractive index was shown by Boyd’s
group in indium tin oxide (ITO), which has a dielectric con-
stant near zero [21]. To understand the underlying principles,
consider the dielectric constant, ε, which through a third-order
process depends on the intensity according to ε � ε0 � ε2E2,
yielding the intensity-dependent refractive index

n � ffiffiffi
ε

p � ffiffiffiffiffi
ε0

p �
1� ε2E2

ε0

�
1∕2

≡ n0

�
1� ε2E2

n20

�
1∕2

; (38)

where n0 is the zero-intensity refractive index. Since the change
in the refractive index for typical intensities is small compared
with n0, Eq. (38) can be well approximated by a power series to
order ε2E2, yielding

n ≈ n0 �
ε2E2

2n0
; (39)

which holds only when ε2E2

2n0
≪ n0.

If one forgets that Eq. (39) is a series approximation, it
would seem to imply that an infinite refractive index change
is possible when n0 → 0. To get the correct refractive index
change in the limiting case n0 → 0 requires that the exact

expression given by Eq. (38) be evaluated. In the limit where
the refractive index vanishes so that ε2E2

n20
≫ 1, Eq. (38) can be

approximated by

n ≈
ffiffiffiffiffi
ε2

p
E: (40)

Thus, in the low ε2E2∕n0 approximation, the change in the
refractive index is proportional to the square of the electric
field E2 while for large ε2E2∕n0, the refractive index change
is proportional to the electric field.

To put this into perspective by numerical example, when
the refractive index change Δn � ε2E2 is small—let us say
of the order of Δn � 10−4, as is typical—and then when
the refractive index vanishes, the refractive index change is
Δn � 10−2. As such, smaller refractive index changes give
larger enhancements.

The enhancement can be made to look even greater when
the refractive index change is expressed in terms of the intensity
or in the form n � n0 � n2I . Then, n2 ∝ ε2∕n0. When n0
vanishes, the intensity-dependent refractive index can diverge.
However, when the real part of the relative permittivity van-
ishes in ITO, ε � 0.4i, so the magnitude of the refractive index
does not vanish.

The key point here is that the fundamental nonlinearity γ is
indeed bounded, which places a limit on the induced dipole
moment for a given electric field, which is also bounded.
The refractive index and the intensity are not fundamental
quantities but observables that derive from the fundamental
quantities. It is thus possible for ratios of quantities to give in-
finite results when the denominator vanishes.

This is an important point that is missed in the quest for
making materials with a large nonlinear-optical susceptibility.
The nonlinear susceptibility alone may not be the quantity
of interest. Rather, composite properties such as the FOM
for an application may be a more appropriate parameter for
optimization. In fact, a FOM may be large when the nonlin-
earity is small. Thus, material designs would be more effective
when the FOM is the quantity targeted. This ground-up ap-
proach for electro-optic modulators shows that low optical loss
may be more important than high nonlinearity [22].

The limits of the hyperpolarizabilities are observed to be
obeyed for all classical and quantum systems. As such, we focus
on these upper bounds with the understanding that specific
applications have requirements that are quantified by figures
of merit that may not have an upper bound. However, since
the figures of merit depend on fundamental properties—each
governed by quantum principles—these properties cannot be
individually adjusted.

5. CONCLUSION AND PERSPECTIVES

The intrinsic nonlinear-optical response is used as a metric to
identify those underlying properties of a material that are criti-
cal to optimizing the bulk nonlinear-optical response. The
process starts at the microscopic level to identify which molecu-
lar paradigms give the largest nonlinearity for a given size, as
characterized by the intrinsic nonlinearity. Then, the depend-
ence of the nonlinearity is studied as a function of the system
size. A quantum system with a large intrinsic nonlinear-optical
response that it retains when it is made larger will have a huge
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absolute nonlinear susceptibility. The scaling of a particle in a
box model was used for illustration and found to scale as a
power law when unit cells are added to both increase length
and add electrons. On 100 Å scales, the predicted nonlinearities
are orders of magnitude larger than the best systems reported.

The power-law length dependence implies that nonlinearities
can be made much larger when the system is made marginally
longer, provided that the nonlinear response is of quantum
mechanical origin. It is found that the ideal quantum unit is
one-dimensional because transverse states dilute the strength
of the nonlinearity by rendering a majority of the electrons in-
effective. A system that is larger than the critical size, where a
classical response dominates, no longer takes advantage of in-
creased size. At this point, it would be worthwhile to investigate
methods for retaining quantum behavior on larger length scales.

Finally, the quantum units need to be arranged in a way that
gives the largest nonlinear response. The one-dimensional units
should be parallel to each other so that the nonlinearly of each
unit is reinforced and the density should be as high as possible.
A large second-order susceptibility requires a polar-aligned
material and a large third-order susceptibility requires an axially
aligned material. Figure 3 shows the ideal material.

Since the size of the ideal molecular units borders on the
classical realm and requires high electron density, it will most
likely be a metal, rigid metallic polymer or a hybrid system made
of interacting nanoscale particles and molecules. Second, the
wave functions will need to be precisely controlled to optimize
the overlap between the ground state and the two dominant ex-
cited states. Possible avenues include using impurities [23],
modulated conjugation of molecular bonds [24], or topology
that controls the placement of kinks in the wave functions
[25]. The units that make up the material could be aligned with
the application of an electric or magnetic field, local steric forces
such as those in liquid crystals, or using chemical bonds as
spacers that hold the individual units together [26–28].

The requirement of one-dimensional units originates in the
dipole approximation, which governs the strength of the in-
duced electric dipole moment by an electric field. While electric
dipole excitations generally give larger susceptibilities than the
magnetic dipole term, there may be ways to get a larger re-
sponse in a magnetic material. A magnetic dipole is a current

running in a closed loop, so it is inherently a planar structure.
Since the nonlinear response in this case should grow as a power
law of the area, and the area grows in proportion to the square
of the diameter, it may be possible to find systems that are just
as good, if not better than electric dipolar ones, if they can be
made large enough.

The central result in this work is that the nonlinear response
of molecular units is optimized if the system is described by
quantum excitations of a 1D structure. At the other extreme,
where a system is large enough to behave classically, the local
fields are enhanced as one finds in plasmonic systems, an effect
known for decades [29–31], and years ago was applied to
enhancing the second-harmonic efficiency [32]. However, as
we have shown, a system of classical size uses its electrons in-
effectively, ironically making plasmonic systems the least effi-
cient users of electrons. It is proposed here that the ideal
balance starts with the design of molecular units using quantum
principles and making them as long as possible until the point
of diminishing returns is reached. Then, aggregates of the
molecular units can be made to interact with each other in ways
that intensify the molecular response. This use of hierarchies
allows a material to best take advantage of its electrons on
all length scales. While no such system can beat the fundamen-
tal limits when all the electrons are counted, a hierarchical de-
sign might lead to huge absolute nonlinear response that
exceeds the best materials by many orders of magnitude.

When a material is being designed for a particular applica-
tion, the FOM needs to be optimized. Since figures of merit are
often not fundamental quantum properties, they can be arbi-
trarily large. In these cases, one can model the FOM in terms of
fundamental parameters (such as hyperpolarizability and loss)
to find the ultimate material design.

The approaches outlined here are difficult to implement and
rely on fundamental properties that are not intuitively obvious
to a synthetic chemist or a material scientist. In contrast, tradi-
tional approaches used to design better materials are more in-
tuitive but lead to only incremental improvements. This
paper shows that using the fundamental limits and intrinsic
nonlinearities as a guide to designing better materials offers
the promise of many-orders-of-magnitude improvements in
the nonlinear response or FOMs.

APPENDIX A: FILLING THE STATES OF A BOX

In a rectangular box, each energy eigenfunction is expressed as
the product of three wave functions along the three Cartesian
axes that are perpendicular to the walls of the box. First, we
determine which pairs of transverse quantum numbers p and
q contribute an energy less than that due to the quantum num-
ber n associated with the longitudinal contribution. We define
the longitudinal direction to be along the applied electric field.

Figure 4(a) shows the energy-level diagram of the three
Cartesian components. The task at hand is to determine the quan-
tum number n for highest-energy occupied state given that N el
electrons fill the box. To do so requires a calculation of the num-
ber of transverse states with energy less than the energy of state n.

According to Eq. (26), the transverse contribution due to
the pair of quantum numbers p and q is less than due to
the longitudinal state n when

Fig. 3. Ideal second-order nonlinear-optical material is made of
one-dimensional polar objects that are each as large as possible without
showing quantum behavior and packed to maximum density. A third-
order susceptibility requires axial order.
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n2

d 2 <
p2

L21
� q2

L22
; (A1)

where L1 and L2 are the lengths of the two transverse edges of
the box. Figure 4(b) shows a plot of this boundary and the
green crosses show all pairs of p and q with energy less than
that due to the longitudinal contribution.

Equation (A1) defines an ellipse whose area in the first
quadrant (due to the restriction that all quantum numbers are
positive) determines the number of pairs of quantum numbers
that we seek. The number of states is thus given by

g�n� � π
L1L2
4d 2 n2: (A2)

The total number of electrons for a system filled to quantum
number n is then given by

Nel � 2n� 2g�n� � 2n� π
L1L2
2d 2 n2; (A3)

where we fill each state with two electrons.
Solving Eq. (A3) for n yields the highest occupied state,

n �
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� π L1L2

2d 2 N el

q
π L1L2

2d2

: (A4)

Omitting the unphysical negative solution for n, the asymptotic
solution to Eq. (A4) when the transverse dimensions L1 and L2
are much larger than d gives

n →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
·
d 2

L1L2
· Nel

s
: (A5)

Note that in the limiting case where d 2 ≫ L1L2, Eq. (A4) gives
n � Nel∕2, which is in agreement with what we expect for the
one-dimensional case.
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