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We apply the quadrature-based perturbation method of Dalgarno and Lewis to the evaluation of the nonlinear
optical response of quantum systems. This general operator method for perturbation theory allows us to derive
exact expressions for the first three electronic polarizabilities, which requires only a good estimate of the ground
state wave function, makes no explicit reference to the underlying potential, and avoids complexities arising from
excited state degeneracies. We apply this method to simple examples in one-dimensional quantum mechanics for
illustration, exploring the sensitivity of this method to variational solutions as well as poor numerical sampling.
Finally, to the best of our knowledge, we extend the Dalgarno–Lewis method for the first time to time-harmonic
perturbations, allowing dispersion characteristics to be determined from the unperturbed ground state wave
function alone. © 2016 Optical Society of America
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1. INTRODUCTION

The collection of phenomena emergent from the nonlinear
coupling of electric fields is varied and unique in the amount
of control they promise over the phase, polarization, and fre-
quency of light, but the efficiency of such processes is limited
by the inherent response of the material mediating the optical
coupling [1]. Development of efficient molecular systems has
progressed steadily but is hampered by the inability to accu-
rately classify and quantify the quantum-scale characteristics
which result in optimized nonlinear optical responses [2–6].

Determining the macroscopic response of a material, from
nonlinear crystals to organic dye-doped polymers, is a compli-
cated process which must take many contributions into account.
For applications which require the fastest dynamic response, the
material efficiency is fundamentally limited by the response char-
acteristics of the microscopic electronic systems which make up
the material. The determination of fundamental characteristics
which permit electronic quantum systems to exhibit maximal
nonlinear responses is of primary interest.

Such studies are often carried out by using the sum-over-states
(SOS) method for describing the perturbative response of a struc-
ture to an external optical field [7]. As an extension of standard
time-dependent perturbation theory, this method requires the
complete set of energy eigenfunctions and energy eigenvalues for
the system in question. In practice, the SOS method is often im-
plemented with two or three states alone, introducing a systematic

truncation error. The method we present here allows for an exact
calculation of the nonlinear susceptibilities with knowledge of the
ground state wave function alone, bypassing any complications
due to difficulty in obtaining excited state solutions or identifying
complex degeneracies in the energy spectrum.

Here we present a method of calculating the nonlinear re-
sponse of quantum systems by generalizing the Dalgarno–
Lewis (DL) perturbation theory [8–12] to the computation
of the dispersion of a time-harmonic perturbation within the
context of electronic, nonlinear optical hyperpolarizabilities in
the electric dipole approximation. The DL method replaces the
sum over excited states from perturbation theory with an ex-
pectation value of an operator which can be deterministically
determined from the ground state wave function. Thus, the
polarizabilities may be computed with knowledge of only
the ground state wave function, independent of the underlying
potential energy function. In effect, DL reduces the identifica-
tion of potentially exciting new electronic systems to a close
examination of their ground state wave functions alone.

Section 2 reviews the conventional SOS approach to
obtaining the hyperpolarizability tensors, which constitutes a
starting point for the DL method. Section 3 derives the DL
approach within the context of nonlinear optics, shows how
it replaces the SOS with an operator, and describes how the
action of that operator on the ground state can be determined
exactly. The application is extended to include the second

Research Article Vol. 33, No. 12 / December 2016 / Journal of the Optical Society of America B E31

0740-3224/16/120E31-09 Journal © 2016 Optical Society of America

mailto:sean.mossman@wsu.edu
mailto:sean.mossman@wsu.edu
mailto:sean.mossman@wsu.edu
http://dx.doi.org/10.1364/JOSAB.33.000E31


hyperpolarizability by defining yet another DL operator.
Section 4 applies the DL perturbation theory to the half har-
monic oscillator and the infinite slant well, using each as a plat-
form for describing the numeric difficulties and strengths of the
method, followed by a discussion of applicability of variational
solutions to DL calculations. Section 5 extends the DL method
to dispersion phenomenon by quantizing the photon field and
incorporating the photon frequency into the perturbation
theory. Section 6 concludes with a discussion of the application
of DL to practical systems and the interpretation of the DL
operators in the context of virtual transitions.

2. SUM-OVER-STATES EVALUATION OF
HYPERPOLARIZABILITIES

The SOS expressions for the polarizabilities are a result of ap-
plying standard Rayleigh–Schrödinger perturbation theory to
the dipole perturbation [1,7,13]. Beginning with an arbitrary
Hamiltonian and the corresponding set of unperturbed, elec-
tronic stationary states,

H 0jni � Enjni; (1)

we take the dominant radiation process to be represented by an
interaction potential of the form H 0 � −μ⃗ · E⃗�t�, the scalar
product of the dipole moment with the external, time-
harmonic field, which is taken to be uniform across the system
at any given time. Thus, our perturbing potential is

H 0 � Re�−er⃗ · E⃗e−iωt �; (2)

where the electric charge e and the electric field strength E⃗ are
treated as constant parameters.

The response of the system to an electric field at low temper-
atures is determined by the dipole moment of the ground state
perturbed by the electric field. The perturbed state is defined by

H jΨ0i � �H 0 �H 0�jΨ0i � E 0
0Ψ0i: (3)

The expectation value of the dipole moment in the per-
turbed ground state can be expressed by the expansion

hΨ0jμijΨ0i�μi00�αijEj�βijkEjEk�γijklEjEkE l �…; (4)

which separates the contributions to the total dipole moment
which arise from different orders of applied electric field
strength. Therefore, the resulting radiation is fully determined
by the applied fields and the polarizability tensors, αij, βijk, γijkl ,
and so on.

The usual procedure for determining the linear polarizability
αij and the first and second hyperpolarizabilities, βijk and γijkl ,
respectively, begins with time-dependent perturbation theory.
The perturbation given by Eq. (2) can be taken in two parts:
the time-harmonic electric field with a constant magnitude
and the dipole operator. The time-harmonic part contributes
frequency to the denominator, then drops out of the perturba-
tion theory, leaving expressions much like time-independent
perturbation theory on the position operator. This procedure
results in the analytical expressions for the polarizability,

αij�ω� � e2PF

X
m≠0

�
xi0mx

j
m0

Em0 − ℏω

�
; (5)

and the hyperpolarizabilities,

βijk�−ωσ ;ω1;ω2� �
e3

2
PF

X
m;n≠0

�
xi0n�xjnm − xj00δnm�xkm0

�Em0 − ℏωσ��En0 − ℏω2�

�
;

(6)

and

γijkl �−ωσ ;ω1;ω2;ω3�

� e4

6
PF

� X
m;n;p≠0

xi0n�xjnm − xj00δnm��xkmp − xk00δmp�xlp0
�En0 − ℏωσ��Em0 − ℏω2 − ℏω3��Ep0 − ℏω3�

−
X
n;m≠0

xi0nx
j
n0x

k
0mx

l
m0

�En0 − ℏωσ��En0 − ℏω2 − ℏω3��Em0 − ℏω3�

�
; (7)

where PF indicates a sum over all tensor component permuta-
tions, xinm � hnjxijmi for the ith Cartesian component of the
position operator, En0 � En − E0, and the sums include all un-
perturbed excited states of the system. The problem of secular
divergences, centering around the inclusion of the ground state
in the above sums, has been a long discussed issue and has been
settled from a few different perspectives [7,14].

SOS expressions are fundamental to all of perturbation
theory and show up in a plethora of applications, from deter-
mining Van der Waals coefficients for interatomic and inter-
molecular forces to multiphoton ionization cross sections. It
is commonplace to see that, when this perturbation theory
is correctly applied, the sums converge sufficiently after includ-
ing a small number of excited states, as shown in Fig. 1 for the
half harmonic oscillator in one dimension. However, in prac-
tice, one must always truncate the sum at some point. A two or
three level model might be all that is possible with computa-
tional results, and highly excited states are often particularly
difficult to include. Furthermore, the number of terms in
the sum for β scales as the square of the number of states in-
cluded while γ scales as the cube; the DL calculations scale lin-
early, each order requiring only one additional integration, and
can therefore be completed significantly faster, in principle.

Fig. 1. Convergence behavior of the SOS calculation for the half
harmonic oscillator. Typical SOS calculations have similar behavior.
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3. DALGARNO–LEWIS PERTURBATION
FORMALISM IN THE STATIC FIELD LIMIT

The DL perturbation method recasts the products of transition
moments and energy denominators from Eqs. (5)–(7) as oper-
ators in such a way that the SOS can be removed [10]. The SOS
expressions are replaced by ground state expectation values of
operator products containing all of the physics of the pertur-
bations. In this section, we show how this is accomplished
and derive explicit expectation values for the nonlinear optical
susceptibilities in the static field limit, leaving dispersion for
Section 5.

A. First Hyperpolarizability

Suppose that an operator F i exists such that the following com-
mutator equation holds:

�F i; H 0� � �xi − xi00�; (8)

where H 0 is the unperturbed Hamiltonian and the right hand
side represents the perturbation potential discussed in Section 2
up to constant parameters. Equation (8) then defines the off-
diagonal matrix elements of the operator F i as

hmjF ijni � hmjxijni
En − Em

for m ≠ n: (9)

Substituting Eq. (9) into Eq. (6) yields

βijk �
e3

2
PF

X
m;n≠0

h0jF ijnihnjxj − xj00jmihmj − Fkj0i: (10)

The utility of this operator approach then becomes clear: we
have decoupled the n and m indices, allowing the sums to
be removed by way of closure. Without loss of generality we
may take h0jF j0i � 0, and therefore Eqs. (5) and (6) become

αij � e2PF h0jF ixjj0i (11)

and

βijk � −
e3

2
PF h0jF i�xj − xj00�Fkj0i: (12)

The SOS has been reduced to the computation of an expect-
ation value of a single product of operators, with the operators
F i to be determined for each Cartesian direction.

B. Properties of the DL Operator F i

From inspection of the defining equation for F i, Eq. (8), it is
clear that F i must be an anti-Hermitian operator, uniquely de-
termined except for the addition of any operator that commutes
withH 0, which would leave Eq. (8) invariant. We would like to
project this operator into position space, but any local spatial
representation of such an operator would necessarily be imagi-
nary; any function position must be imaginary to also represent
an anti-Hermitian operator. This is in conflict with the SOS
representation, as can be seen more explicitly by directly rep-
resenting the operator F i in terms of its matrix elements as

F i �
X
n≠m

�hnjxjmi
Em − En

jnihmj
�
; (13)

where for real transition moments, the matrix elements of F i

are similarly real. To determine all of the matrix elements of the

operator F i requires the completion of the SOS as dictated
by Eq. (13).

However, to compute the nonlinear response of a system at
low temperature we are interested only in the nonlinear cou-
pling of the ground state through virtual transitions back to the
ground state. Therefore, the only information we require is the
action of the F i operator on the ground state, and this specific
operation is expressible as a function of x⃗. To see this, we define
a function F i

0�x⃗� such that

hx⃗jF ij0i ≡ F i
0�x⃗�ψ0�x⃗�; (14)

and, reflecting the anti-Hermitian nature of the operator, we
also require

h0jF ijx⃗i � −F i�
0 �x⃗�ψ�

0�x⃗�: (15)

This procedure is always valid as the state vector, which re-
sults from the operation of F i on the ground state being also a
state vector in the same Hilbert space, as is evident in Eq. (13),
and its projection into spatial coordinates can be represented by
some function of x⃗, which we choose to write as F i

0�x⃗�ψ0�x⃗�.
It is important to realize that F i

0�x⃗� is not the position
representation of the operator F i, but rather a function that
represents the operation of F i on the ground state specifically.

In order to calculate the function F i
0�x⃗�, we return to the

commutator definition of F i, Eq. (8). Taking a mechanical
Hamiltonian of the form H 0 � p2

2m � V 0 and projecting into
spatial coordinates,

hx⃗j�F i; H 0�j0i � hx⃗jx − x00j0i; (16)

yields

ℏ2

2m
�ψ0�x⃗�∇2F i

0�x⃗� � 2∇F i
0�x⃗� · ∇ψ0�x⃗��

� �xi − xi00�ψ0�x⃗�; (17)

or equivalently

ℏ2

2m
1

ψ0�x⃗�
∇ · �ψ2

0�x⃗�∇F 0�x⃗�� � �x − x00�ψ0�x⃗�; (18)

which can be solved in general to obtain the function F i
0�x⃗�

with knowledge of the ground state wave function alone.
Equations (11) and (12) can then be calculated by integrating
across products of F i

0�x⃗�, ψ0�x⃗�, and x⃗.
For a Cartesian separable system, that is,

ψ0�x⃗� �
Q

iϕ
i
0�xi�, the integral solution to Eq. (17) is

F i
0�xi� �

2m
ℏ2

Z
1

�ϕi
0�x 0��2

×
�Z

x 0

a
�ξi − ξi00��ϕi

0�ξ��2dξ
�
dx 0 � C; (19)

where a is chosen such that limx→a ϕ
i
0�x� � 0 to satisfy the

boundary conditions on the differential equation and C is un-
determined but chosen such that h0jF j0i � 0 for convenience.
The ground state has the important characteristic of being
nodeless except for two points, at most, which necessarily
bound the domain of the state function. Interestingly, the func-
tion F i

0�x⃗� must contain phase information from ψ0�x⃗�; hence
we see the square of the wave function rather than the absolute
square.
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Summarizing, the DL formalism starts with the definition of
a set of anti-Hermitian operators F i via a commutation relation
with the unperturbed Hamiltonian and results in an explicit
expression for the spatial representation of the operator’s inner
product with the ground state in terms of quadratures, which
depend only on the ground state wave function. If the ground
state is known, then the functions F i

0�x⃗� are calculable. With
the functions F i

0�x� in hand, one for each Cartesian direction,
Eqs. (11) and (12) may be projected into position space and
integrated to obtain the linear and first hyperpolarizability ten-
sors, regardless of the symmetries of the system or the degen-
eracies in the spectrum. The ground state alone determines the
response of the system.

C. Second Hyperpolarizability

The second hyperpolarizability γijkh requires an additional in-
tegration to calculate the response while still only requiring the
ground state wave function. Substituting Eq. (9) into Eq. (7),
we obtain

γijkh �
e4

6
PF

�X
n≠0

�h0jF i�xj − xj00�jnihnj�xk − xk00�Fhj0i
En − E0

�

− h0jF iF jj0ih0jxkFhj0i
�
; (20)

which must be further simplified by defining a new operator
Gij in analogy with F i:

�Gij; H 0� � �xi − xi00�F j − hxiF ji00: (21)

As with F i
0�x⃗�, the matrix elements are given by

hnjGijj0i � −
hnj�xi − xi00�F jj0i

En − E0

: (22)

The last sum can then be removed from Eq. (20) using com-
pleteness, resulting in the operator expression

γijkl �
e4

6
PF �h0jF i�xj − xj00�Gkl j0i − h0jF iF jj0ih0jxkF l j0i�:

(23)

Defining the spatial representation of the Gij operator’s
action on the ground state through

hx⃗jGijj0i ≡ Gij
0 �x⃗�ψ0�x⃗� (24)

and projecting Eq. (21) into position space yields a differential
equation for Gij

0 �x⃗�:
ℏ2

2m
�ψ0�x⃗�∇2Gij

0 �x⃗� � 2∇Gij
0 �x⃗�∇ψ0�x⃗��

� ��xi − xi00�F j
0�x⃗� − hxiF ji00�ψ0�x⃗�: (25)

Just as in Eq. (17), Eq. (25) may be numerically solved for
any two indices i and j. Explicit integrals may be expressed for
the diagonal operators for spatially separable solutions:

Gii
0 �xi� �

2m
ℏ2

Z
1

�ϕi
0�x 0��2

�Z
x 0

a
��ξi − ξi00�F i

0�ξ�

− hxiF ii00��ϕi
0�ξ��2dξ

�
dx 0 � C; (26)

where ϕi
0�a� � 0, and the integration constant is similarly

chosen such that h0jGijj0i � 0.
The higher order susceptibilities can be obtained by follow-

ing this procedure, eliminating energy denominators by absorb-
ing them into progressively iterative operators defined by
commutation with the unperturbed Hamiltonian in analogy
with Eqs. (8) and (21).

D. Interpretation and Extension

A few interesting interpretations follow from the above formal-
ism. The common approach to understanding the structural
characteristics that underlie a strong nonlinear optical response
focuses on the SOS expressions. Equations (5)–(7) clearly in-
dicate that the polarizabilities will be maximized for systems
with strong transitions between the ground state and the lowest
energy excited states, implying that one must consider the low-
lying collection of states to optimize the response. This problem
then reduces to the problem of what underlying electronic po-
tential could possibly generate such a collection of states. This is
a difficult problem with many coupled parameters.

However, Eqs. (17) and (25) of the DL formalism imply
that the calculations of the polarizabilities are independent
of the explicit form of the underlying potential and of the ex-
cited state solutions; that is to say that the entire polarization
expansion can be obtained from the unperturbed ground state
wave function. All information about the zero temperature per-
turbation theory acting on a system is contained within the
ground state solution for that system.

An insightful point of view of the SOS expressions for non-
linear optics lies in the diagrammatic representation of virtual
transitions, which are Feynman diagrams as shown in Fig. 2.
Each matrix element and corresponding energy denominator in
the SOS expressions can be associated with the absorption of a
photon and a virtual transition of the quantum system into a

(a) (b)

Fig. 2. (a) The Feynman diagram represents a second order process
where two photons interact with a quantum system in succession. The
first photon causes a virtual transition from the ground state to some
excited state, jmi; the second causes a virtual transition from the state
jmi to another excited state, jni; then finally the system emits a photon
as it makes a final virtual transition from jmi back to the ground state.
(b) In the DL formalism these virtual transitions are subsumed into a
single expectation value. Graphically, we show a literal “black box” as a
Feynman diagram in this context is rather unnecessary.
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sum over all excited states. From that perspective, one may take
the matrix elements of the F i operator as a black box containing
all of the virtual transitions, coupling the ground state with the
photon field, then directly returning the system to the
ground state.

The F i operator contains all of the information for the first
order perturbation theory [15]. From Eq. (13), it is obvious
that the first-order correction to the pth eigenstate of the un-
perturbed Hamiltonian can be expressed as

jΨ�1�
p i � F ijpi �

X
n≠p

hnjxijpi
Ep − En

jni; (27)

in agreement with standard perturbation theory. The F i oper-
ator explicitly determines the perturbed states, and while deter-
mining the operator F i fully would require as much work as the
full SOS, the first order correction to the ground state can be
determined by explicitly solving for the F i operator’s action on
the ground state alone.

We have explicitly projected the operator relation, Eq. (8),
into spatial coordinates to yield an inhomogeneous differential
equation on the function we call F i

0�x⃗�. We believe that this
method can be applied to many electron solutions determined
from density functional theory or Hartree–Fock methods [16]
by generalizing Eqs. (17) and (25) to the corresponding many
electron operators, but practical demonstration of this we leave
for future work. Alternatively, one could project onto the set of
atomic orbital states to recover the method of diagrammatic
valence bond theory [17] for which algebraic methods have
been developed [18,19] for tackling the numerical problems
associated with many electron problems.

4. APPLICATIONS TO QUANTUM SYSTEMS

We illustrate the application of the DL approach with two
models that display the simplicity of the method and, at the
same time, show how the numerical integrations must be care-
fully handled in order to avoid divergences. These are expected
from an examination of Eq. (19) for F i

0 and Eq. (26) for Gij
0,

where the outer integrals depend on the inverse square of the
ground state wave function, which vanishes at one or both of
the limits of integration.

We apply the new method to a one dimensional half har-
monic oscillator and a one dimensional slant well. All calcula-
tions of polarizabilities are normalized to the fundamental limit
as a convenient choice of intrinsic units, which remove any
dependence on the overall length scale [20,21].

A. Half Harmonic Oscillator

The Schrödinger equation for a half harmonic oscillator is�
ℏ2

2m
d 2

dx2
� V �x�

�
ψn�x� � Enψn�x�; (28)

with

V �x� �
�

1
2mω

2x2 x > 0
∞ x ≤ 0

; (29)

which admits the odd solutions from the full harmonic oscil-
lator in the positive x half space. This forced asymmetry allows
for a nonzero first hyperpolarizability, which can be calculated

to arbitrary accuracy by way of the SOS expressions as the
transition moments are analytically determined [22]. For con-
venience we choose m, e, ℏ, and ω as unity.

To determine the applicability of the DL method to
numerical solutions, we approach this problem using a standard
finite difference method [23] for the ground state solution of
the Schrödinger equation and then proceed with the DL inte-
grations. Figure 3(a) shows the charge density obtained using
finite differences as well as the resulting DL hyperpolarizability
results, which compare very well with the exact results using
analytic x matrix elements and energies. Figure 3(b) shows that
the solutions for F 0�x� andG0�x� become unstable, but only in
the region where the wave function has decayed to a sufficiently
small magnitude such that the integrals have already converged
well. Judicious choice of the integration domain allows for ac-
curate calculations of the hyperpolarizabilities.

One might be concerned with how lack of resolution on the
ground state solution affects the DL calculation, specifically if
the regions where the wave function is nearly zero affect the
calculation. To investigate this, we use a generalized finite dif-
ference method which allows us to reduce the resolution within
some part of the problem space to determine the effect on the
results. This course resolution region is moved through the do-
main, and the hyperpolarizabilities are calculated for each po-
sition. To mitigate anomalous numerical error resulting strictly
from an abrupt change in grid resolution, we implement a
smooth change of the resolution with a half cosine distribution,
reducing and restoring the resolution smoothly across the region.

Figure 4 shows that rather than requiring high resolution
in the regions where the wave function is vanishingly small,
high resolution is needed where the integrand has the most

(a)

(b)

(c)

Fig. 3. (a) Ground state charge density for the half harmonic oscil-
lator and the hyperpolarizabilities calculated using DL and SOS,
(b) DL functions F 0�x� and G0�x�, and (c) the relevant integrands
for calculation with the numerically unstable region highlighted by
the grey background.
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curvature, just as one might expect from basic numerical inte-
gration. This result indicates that future work on systems whose
solutions require a large amount of memory or a long run time
can dedicate resources to those regions which require accurate
integration and need not be overly concerned with the far field
regions where the ground state wave function necessarily de-
cays away.

B. DL on Variational Ground State Solutions

In the previous section, we addressed how the DL solutions are
affected by the resolution of the ground state wave function.
Here we investigate how effectively the DL approach can
approximate the polarizabilities from ground state wave func-
tions obtained through variational methods. We choose varia-
tional functions, which can only approximate the analytic results
for the following one-dimensional potentials: the half harmonic
oscillator and the infinite slant well. The purpose of this discus-
sion is not to obtain good variational solutions, but rather to
observe how deviations in the ground state wave function mani-
fest as differences in the calculated hyperpolarizability.

The variational ground states are obtained by choosing a
functional form for the ground state wave function which de-
pends on a few parameters, then varying those parameters until
the expectation value of the energy is minimized for each po-
tential. For the half harmonic oscillator potential given in
Eq. (29), we use the function

ψ var � A sin

�
πx
5

�
exp−a�x−b�

2 ; (30)

as opposed to the analytic solution

ψFD ∝ x exp

�
−
1

2
x2
�
; (31)

where the parameters a and b are varied to minimize the energy,
while A is a normalization constant which depends on a and b.
Similarly, for the infinite slant well potential,

V �x� �
�
10x 0 < x < 1
∞ elsewhere

; (32)

we use the function

ψ var � Axa�1 − x�b: (33)

Figure 5 shows the ground state wave functions obtained di-
rectly by finite differences and those obtained by applying the
variational principle as well as the resulting DL calculations for
comparison. Recall from Eq. (12) that the relevant integrand for
calculating the hyperpolarizability β is x�Fx

0�x�ψ0�x��2, so we
should expect deviations in the wave functions to propagate
through to the hyperpolarizability result accordingly.

We observe that a variational solution can be used to effec-
tively calculate the hyperpolarizability, but small deviations
in the ground state wave function do result in appreciable
deviations in the hyperpolarizability. Comparison of direct
finite difference and variational methods show that the hyper-
polarizabilities calculated using the DL method from the varia-
tional solutions result in a percent difference at least two orders

(a)

(b)

(c)

Fig. 4. Resolution is reduced by a factor of two in a unit-wide region
centered on different points of the problem space as shown by sparser
points in red, shown as an example for the center position x � 2 for
(a) the charge density and (b) the DL integrands. (c) The percent dif-
ference from the exact result as a function of the central position of the
reduced resolution region.

(a)

(b)

Fig. 5. Variational ground state solutions and the pertinent inte-
grand for the DL calculation of β are plotted for (a) the half harmonic
oscillator described by Eq. (29), with m, e, ℏ, and ω � 1, and (b) the
infinite slant well described by Eq. (32).
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of magnitude greater than the percent difference in the ener-
gies. The hyperpolarizability limit is calculated using the first
energy difference from finite differences for both cases. When
Eq. (30) approximates the half harmonic oscillator solution, we
observe that forcing a node in the approximate ground state
causes significant deviation in the F 0 function but in a region
where the wave function has decayed sufficiently to dampen the
effect on the final result. This behavior is characteristic of the
open boundary condition as opposed to an infinite potential
boundary.

5. DALGARNO–LEWIS FOR FINITE FREQUENCY
FIELDS

To include frequency dependence in our formulation ofDL per-
turbation theory, wemust revisit the form of ourHamiltonian as
well as include the photon field in our state vectors. For the sake
of clarity, we will assume that the unperturbed Hamiltonian is
one dimensional, but as before, the operators can be generalized
to tensor operators for higher dimensional models. With a
photon field present, the unperturbed Hamiltonian is given byeH 0 � H 0 �

X
ω

ℏωa†ωaω; (34)

and the perturbing potential is given by

H 0 � �x − x00��aω − a†ω�; (35)

where the operators aω and a†ω are the annihilation and creation
operators for the photon field of frequency ω, respectively, and
we have suppressed the time harmonic oscillation as well as the
electric field magnitude, as we would normally. Physically,
each dipole transition of the system is accompanied by a
single photon emission or absorption; the nonzero transition
elements for a photon absorption will have the form
hn; N ω − 1jx · aωj0; N ωi.

Now, by analogy with Eq. (8), we define the frequency
dependent F operator by the commutator,

�Fω; eH � � �x − x00��aω − a†ω�; (36)

and consider the matrix element

hn; N ω − 1j�Fω; H̃ 0�j0; N ωi
� hn; N ω − 1j�x − x00��aω − a†ω�j0; N ωi; (37)

hn; N ω − 1jFωj0; N ωi � −
x0n

ffiffiffiffiffiffiffi
N ω

p

En − E0 − ℏω
; (38)

recalling that the electric field intensity is proportional to N ω.
Notice that Fω operates on the state vectors of the field much
like a creation or annihilation operator.

Now, we make the following definition for the DL function,

hx;M jFωj0; N i � F 0�ω; x�ψ0�x�hM jaωjN i

�
� ffiffiffiffiffi

N
p

F 0�ω; x�ψ0�x� for M � N − 1
0 otherwise

;

(39)

in analogy with Eq. (14). Recall that the function F 0�x� is de-
fined by the F operator’s action on the ground state; thus N
must be decreased when operated upon by F, eliminating the
contribution from a†ω. Then, going back to the definition of the

operator F, we consider the matrix elements of the defining
commutation relation,

hx; N ω − 1j�F; H̃ 0�j0; N ωi � hx; N ω − 1jx̄�aω � a†ω�j0; N ωi;
(40)

asnd after operations similar to those between Eqs. (16) and
(17) we have

ℏ2

2m

�
∇2F 0�ω; x�ψ0�x� � 2∇F 0�ω; x� · ∇ψ0�x�

� 2mω
ℏ

F 0�ω; x�ψ0�x�
�

� x̄ψ0�x�; (41)

or equivalently

ℏ2

2m
∇ · �ψ2

0�x�∇F 0�ω; x�� � �x̄ − ℏωF 0�ω; x��ψ2
0�x�; (42)

as defining differential equations for the frequency dependent
DL function. Unfortunately, as opposed to the static case, this
differential equation is truly of second order and cannot be cast
into an integral equation, even in one dimension.

A. Boundary Conditions on the DL Differential
Equations

At this point it is necessary to go back and investigate the boun-
dary conditions on these differential equations more closely.
The boundary conditions which determine F 0�x� are inherited
from the boundary conditions which determine the ground
state wave function along with the physical requirement that
the perturbation theory converges.

The boundary conditions on the Schrödinger equation re-
quire the bound state solutions to be square integrable. For the
ground state of a single electron system we know this to mean
that the solution will have at most two zeros, and they will
bound the space over which the ground state exists.

Going back to Eq. (17), we consider the limit as x
approaches a for ψ0�a� � 0. If ∇ψ0�a� ≠ 0, then we recover
the simple boundary condition ∇F�a� � 0, as would be the
case for any system which has a hard wall boundary.
Otherwise, we obtain the boundary condition

∇F 0�a� �
m
ℏ2 limx⃗→a

�x − x00�ψ0�x⃗�
∇ψ0�x⃗�

; (43)

which agrees with the Eq. (19) condition of taking the lower
bound on the interior integral to be a, shown by taking

lim
x→a

�
dF 0�x�
dx

� 2m
ℏ2

1

ψ2
0�x�

Z
x

a
dx 0�x 0 − x00�ψ2

0�x 0�
�
: (44)

One boundary condition is sufficient as Eq. (17) is effec-
tively a first order differential equation on ∇F 0�x�, and the re-
sulting perturbation theory is invariant upon addition of a
constant to F 0�x⃗�.

In the time harmonic case, Eq. (41) is truly second order,
and both undetermined constants contribute nontrivial func-
tions of x⃗. To fix both undetermined coefficients, we must take
both endpoints of the ground state and enforce Neumann con-
ditions on the Fω

0 �x� function. Following similar arguments as
above, we obtain the boundary condition

Research Article Vol. 33, No. 12 / December 2016 / Journal of the Optical Society of America B E37



∇F 0�a� �
m
ℏ2 limx→a

�x − x00�ψ0�x�
∇ψ0�x�

−
ℏωF 0�x�ψ0�x�

∇ψ0�x�
: (45)

Again, if ∇ψ0�a� � 0, then we recover the simple boundary
conditions ∇F 0�a� � 0, but otherwise our boundary condi-
tion is itself a differential equation on F 0�x�.

For practical purposes, one can always approximate a
ground state solution which decays exponentially at infinity
as being confined to some large box. Infinite wall boundary
conditions allow one to simplify the boundary conditions to
∇F �a⃗� � 0, where a is taken at both nodes of the approximate
wave function.

B. Dispersion of the Square Well Polarizability

To illustrate the validity of the dispersive DL result given pre-
viously, we calculate the dispersion of the polarizability for an
infinite square well in one dimension of unit length with the
ground state solution,

ψ0�x� �
ffiffiffi
2

p
sin�πx�: (46)

Our task is then to solve the differential equation defined by
Eq. (41), treating the frequency as a parameter. The infinite
square well is particularly convenient as it has a simple func-
tional form for the ground state wave function and has distinct
nodes at the edges of the well.

Taking atomic units and the boundary conditions F 0
0�0� �

0 and F 0
0�1� � 0, we obtain the solution for the square well:

Fω
0 �x� �

1

2
�
1 − e

ffiffiffiffiffiffiffiffiffiffiffi
−π2−2ω

p 	
ω2

h�
1 − e

ffiffiffiffiffiffiffiffiffiffiffi
−π2−2ω

p 	�2x − 1�ω
−2
�
1 − e

ffiffiffiffiffiffiffiffiffiffiffi
−π2−2ω

p 	
π cot�πx�

�2
�
ex

ffiffiffiffiffiffiffiffiffiffiffi
−π2−2ω

p
− e�1−x�

ffiffiffiffiffiffiffiffiffiffiffi
−π2−2ω

p 	
π csc�πx�

i
; (47)

shown in Fig. 6 for a variety of frequencies. For each frequency,
Fω
0 �x� is integrated according to Eq. (11), namely,

α�−ω;ω� � e2

2

Z
L

0

dx�−Fω
0 �x�ψ�

0�x�xψ0�x�

− F −ω
0 �x�ψ�

0�x�xψ0�x��; (48)

where we have been careful to evaluate the permutation
operator and introduce minus signs corresponding to the F op-
erator acting to the left on the ground state. Figure 7 shows
that the two methods agree very well, capturing at least the
first three resonances, their values corresponding to En0 �
π2�2n2 − 1∕2�, though this information was not supplied to
the DL calculation in any way beyond solving Eq. (41) with
the ground state wave function. Evidently, the ground state
contains all the information about the dispersion and ampli-
tude of all optical transitions, retrievable through a few integra-
tions. One could also determine the unperturbed energy
eigenvalues from the position of the resonances. While this
example has been integrated analytically, the power in the DL
method is the ease with which numerical methods can be
brought to bear on integration of a single function, as opposed
to determining many eigenfunctions, integrating many matrix
elements, and completing the necessary sums.

6. CONCLUSIONS

We have shown here that the application of the DL perturba-
tion formalism to the calculation of nonlinear optical coeffi-
cients can provide a high degree of accuracy for simple,
single-electron systems, with many advantages over the custom-
ary SOS expressions. The remarkable feature of the DL pertur-
bation method is that it requires only the action of the DL
operators on the ground state of the system and that action is cal-
culable from quadratures of the ground state wave function.
This method is particularly useful for numerical solutions
where the grounds state wave function is more easily obtained
than the excited state solutions. The entire SOS expression,
which requires knowledge of all states and energies of a complex
system, is replaced by a new expression that depends only on
the shape of the ground state. Knowledge of neither the full
excitation spectrum nor the underlying potential energy is nec-
essary for calculating the response of the system.

Interestingly, by generalizing the DL differential equation to
include the photon frequency, we are able to determine the res-
onances and dispersion characteristics of a system from the un-
perturbed ground state wave function alone. However, this
method does rely on an unperturbed Hermitian Hamiltonian
of the mechanical form H � p2∕2m� V �x⃗�. Therefore, it is

Fig. 6. Fω
0 �x� DL function for the infinite square well for a variety

of frequencies. As the frequency approaches a resonance, the magni-
tude of the Fω

0 function grows until diverging and switching signs on
resonance.

Fig. 7. Dispersion curves for α of an infinite square well comparing
the DLmethod to the SOSmethod. The first three resonances are shown.
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difficult to incorporate the natural linewidth or other phenom-
enological damping into the dispersion calculation, leaving the
imaginary parts of the susceptibilities out of reach. This has
been addressed by related but different means by Cohen
and Themelis [24] for single valence atoms, showing the adapt-
ability and robustness of numerical DL methods.

This method is similar in spirit to the finite fields (FF)
method in that the ground state solution is all that is required.
However, if analytic derivatives of the wave functions are not
available, a FF simulation relies on many ground state simula-
tions at difference bias fields and many numerical derivatives,
which can be quite unstable. Furthermore, there is no path to
dispersive solutions with a FF calculation. Overall, the benefits
of DL over FFwould have to be looked at on a case-by-case basis.

In the search for the fundamental characteristics of a quan-
tum system with maximal nonlinear response, it is interesting
to note that the discussion may be framed entirely in terms of
the shape of the ground state wave function, as opposed to dis-
cussing energy spectra and transition strengths. This work
shows that those discussions are in fact identical, though the
two perspectives provide significantly different insights on the
problem. The connection between the two can be traced back
to the realization that for low temperatures, all nonzero tran-
sitions must connect back to the ground state, so all quantum
information beyond the ground state cannot contribute to the
result. The fact that the perturbed ground state can be ex-
panded as a superposition of unperturbed excited states, and
is done so using standard perturbation theory, gives an errone-
ous sense of importance to the excited states.

Applying DL to multielectron systems could present signifi-
cant opportunity for development of additional tools for evalu-
ating perturbative calculations on atomic, molecular, and solid
state systems. Variational methods for determining ground
state solutions under Hartree–Fock or density functional
theory are extensively used; DL could provide a more accurate
and numerically efficient approach for determining hyperpolar-
izabilities and other perturbative corrections.
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