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We develop a simple algorithm for determining a set of transition strengths for a single proxy
state which accounts for state truncation in the sum-over-states calculations of the dispersion of
the molecular hyperpolarizabilities. This method relies on the accessibility of the linear optical
properties of a molecular system to correct predictions of nonlinear optical properties by way of the
Thomas-Reiche-Kuhn sum rules. We benchmark this approach by comparison with exact perturba-
tion calculations of one-dimensional power law potentials.

Introduction. The molecular polarizability and the �rst
and second hyperpolarizabilities are the key microscopic
quantities which determine how much nonlinear optical sus-
ceptibility a given material may exhibit[1]. The nonlinear
optical response fundamentally mediates all photon-photon
interactions and may be harnessed for a variety of applica-
tions including all optical switching[], harmonic generation[],
and biomedical imaging[]. The bulk response of any given
material is limited, but not fully described, by the quan-
tum mechanical response of the material's microscopic con-
stituents.
These microscopic susceptibilities are calculable from per-

turbation theory[3] with knowledge of the many-electron
transition elements xinm = 〈n|xi|m〉 and the energy di�er-
ences Enm = En − Em, where xi is the ith Cartesian dis-
placement operator and the state indices n and m represent
energy eigenstates of the molecular system.
The linear polarizability can be written in terms of a sum

over states (SOS) as
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and γijkh(−ωσ;ω1, ω2, ω3) is more complicated but takes a
similar form, where e is the charge of the electron and PF
instructs us to sum over all simultaneous permutations of
tensor indices with optical frequencies, where ωσ is the sum
frequency of the input frequencies ωi.
Calculations of the nonlinear polarizabilities from linear

and nonlinear absorption measurements are done using Eqs.
1 and 2 under a �nite state model, often with only two or
three levels[4�6]. For example, Ensley et al. show how the
transition strength to a given state from the ground state,
xi0, can be determined from the magnitude and frequency of
an absorption peak, while the damping parameter for that
transition, Γi0, can be determined from the width of the ab-
sorption peak. Once these measurements are complete, one
would like to be able to calculate the response for the same
material at di�erent frequencies and the higher order nonlin-
ear optical responses which may be di�cult to measure.
Thomas-Reiche-Kuhn sum rules. To proceed we introduce

an additional tool: the Thomas-Reich-Kuhn (TRK) sum
rules have been used historically in discussion of absorption

spectroscopy[7] and more recently as additional constraints
on Eqs. 1-2 which relate the energy eigenvalues to the tran-
sition elements[8�10]. These sum rules are derived from the
canonical commutation relation

[x, [x,H]] =
~2

2me
, (3)

where me is the mass of the electron and H can be any of
a wide range of many-electron Hamiltonians[11]. Inserting
complete sets of states yields the SOS form of the sum rules

Spq =

∞∑
n=0

xpnxnq

(
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1

2
(Ep + Eq)

)
=
Ne~2

2me
δpq, (4)

forming an in�nite set of equations which relate the energy
eigenvalues to the transition elements.
The utility of the sum rules hinges on their applicability to

�nite state models � calculating an in�nite sum for each of an
in�nite set of equations is often impractical. In 2000, Kuzyk
applied a three level model to both the sum rules and the
SOS expressions for the nonlinear susceptibilities to obtain
the fundamental limits

αmax =
Ne~2e2

meE2
10
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10

, (5)

where E10 = E1 − E0 is the energy gap between the �rst
excited state and the ground state. For the remainder of
this work the maximums stated in Eq. 5 will be used as a
scale-invariant choice of units for the linear and nonlinear
susceptibilities.
The sum rules as stated in Eq. 4 converge quickly for

a wide range of systems with a well de�ned set of bound
states, but fail for an important class of potentials in molec-
ular design�those with continuum states which couple to the
ground state. Fig. 1(a) displays each sum rule for state in-
dices p, q < 15 where 30 bound states are included in each
sum for the 1D Coulomb potential, V (x) = −V0/x for x > 0.
The obvious deviation from the identity matrix dictated by
Eq. 4 indicates that important states have been omitted
from the sums.
To fully complete the sum rules, one must include an inte-

gral over the continuous set of unbound states with positive
energy which are also admitted by potentials of the form
V ∝ x−q for q > 0, for example. The purpose of this work
is to propose an algorithm for using easily accessible infor-
mation from a few bound states and measurement, along
with a �nite set of sum rules, to determine a single proxy
state which approximately accounts for the truncated bound
states as well as the continuum of unbound states in the SOS
expressions.
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FIG. 1: The truncated sum rules for the one dimensional Coulomb potential in one dimension, V ∝ −1/x for x > 0, in
units of Ne~2/2me (a) using a 30 state model and (b) supplementing the 30 bound states with a single proxy state.

The sum rule constrained proxy state. We begin by assum-
ing that we have a set of bound states for which we know
the energy di�erences, Enm, and transition elements, xnm,
where n and m run continuously from the ground state to a
�nite truncation point given by N . The diagonal, truncated
sum rules for this set of states are given by

Sboundqq =
2m

Ne~2
N∑
n=0

|xnq|2Enq, (6)

which must sum to values less than or equal to one if all
states q < N are included in the set being summed. If we
then assume one additional state can be added to this set of
states such that the diagonal sum rules are fully satis�ed, we
obtain the relation

|xpq|2Epq =
Ne~2

2me
(1− Sboundqq ), (7)

where p represents the proxy state and Sboundqq is the set
of �nite sums given in Eq. 6. The relation Eq. 7 �xes the
transition moments from each of the bound states to the
proxy state if we have the energy of the proxy state, Ep,
which must only be greater than all Eq. In fact, the o�-
diagonal sum rules can converge much closer to zero for any
proxy state energy greater than EN . However, to �nd a
proxy state which is su�ciently constrained to accurately
predict the nonlinear susceptibilities, we take the additional
constraint to be the zero-frequency linear polarizability.
The zero-frequency linear polarizability is the �rst order

susceptibility which relates the dipole moment resulting from
an applied static �eld as well as the limit of the index of re-
fraction as the frequency goes to zero. The polarizability is
given by Eq. 1 for ω = 0 where we may also neglect the damp-
ing parameter, Γ. We require that the proxy state complete
the polarizability sum resulting from our �nite collection of
bound states such that

α = αbound + 2e2
|x0p|2
Ep0

, (8)

where α is the true zero-frequency polarizability and αbound
is the partial sum resulting from the �nite set of bound states
considered earlier.

Taking the q = 0 case of Eq. 7 and inserting this into
Eq. 8 allows us to solve for the energy di�erence between
the ground state and the proxy state as a function of the
di�erence between the truncated polarizability and the true
polarizability

Ep0 =

√
Ne~2
2me

(
1− Sbound00

α− αbound

)
. (9)

With the energy of the proxy state determined by the polar-
izability, we can compute the transition elements xpq from
the truncated sum rules using Eqs. 7.
Fig. 1(b) shows the �rst 15 sum rules for the Coulomb

potential in one dimension using 30 bound states and the
proxy state determined by the algorithm described here. The
diagonal elements are identically satis�ed by design, but the
o�-diagonal elements are greatly improved compared with
the sum rules excluding the proxy state as shown in Fig. 1(a).
This correction to the o�-diagonal sum rules is insensitive to
the choice of proxy-state energy, only requiring the diagonal
sum rules to produce the necessary transition elements.
Benchmarking the proxy state for dispersive hyperpolariz-

ability . To benchmark the e�ectiveness of the proxy state at
capturing the necessary physics to correct for the state trun-
cation in the hyperpolarizabilities calculations, we center our
attention on power-law potentials in one-dimension given by

V ∝ xq for x > 0 and − 2 < q < 2. (10)

This is a reasonable space of problems as the maximum elec-
tronic hyperpolarizabilities are thought to be in quasi-one
dimensional systems [11] and the power law potentials span
a broad range of potentials including those which admit only
bound state solutions as well as those which have a continu-
ous set of scattering state solutions. We explicitly limit the
space to the positive half such that the �rst hyperpolariz-
ability can be nonzero.
To compare the proxy state solution with the exact solu-

tions, we determine the polarizability and the hyperpolariz-
ability using the exact perturbation method from Dalgarno
and Lewis (DL) [12, 13]. This method requires only the
ground state wavefunction to fully determine the perturba-
tion theory by integration in position space and was recently
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FIG. 2: (a) The dispersion of the linear polarizability for a
30 state sum over states and with a single proxy
state included compared with the full result

calculated using Dalgarno-Lewis (DL). (b) The
percent di�erence from the DL result for the 30
state model and for the result including the proxy
state. The polarizabilities are reported in units of

the o�-resonant limit from Eq. 5.

extended to calculate the frequency dependence of nonlinear
optical susceptibilities in one-dimension[14].
First, we consider the Coulomb potential in one dimen-

sion restricted to positive space, as was used earlier as an
example. This case is particularly interesting as it closely
resembles the potential an electron may feel in a central po-
tential and contains both discrete bound states as well as
continuous scattering states.
Fig. 2(a) and Fig. 3(a) show a comparison between the lin-

ear polarizability and �rst hyperpolarizability, respectively,
obtained from the truncated set of 30 bound states, the trun-
cated set of bound states with the proxy state, and the exact
result obtained from DL. The DL solution is exact up to
numerical error in the integration routine for zero damping,
which limits our description to the real parts of the suscep-
tibilities. Fig. 2(b) and Fig. 3(b) show the percent devia-
tion from the exact solution for both the truncated set and
the truncated set with the proxy state included. For both
the linear response and the nonlinear response we see sig-
ni�cant improvement in the agreement with the exact result
when including the proxy state, including near the �rst few
resonances. The zero-frequency hyperpolarizability deviates
from the true result by 68.4% without the proxy state, and
only by 13.7% with the proxy state included. On resonance,

0.10 0.15 0.20

ω [a.u.]
(a)

−4

−2

0

2

4

β
(2
ω

;ω
,ω

)

βbound

βproxy
βDL

0.10 0.15 0.20

ω [a.u.]
(b)

−100

−50

0

50

100

P
er

ce
n
t

d
ev

ia
ti

on

δβbound

δβproxy

FIG. 3: (a) The dispersion of the �rst hyperpolarizability
for a 30 state sum over states and with a single

proxy state included compared with the full result
calculated using Dalgarno-Lewis (DL). (b) The
percent di�erence from the DL result for the 30
state model and for the result including the proxy
state.The hyperpolarizabilities are reported in units

of the o�-resonant limit from Eq. 5.

the resulting susceptibilities are heavily dominated by the
resonant state itself, and therefore, the need to correct trun-
cation errors goes away. The percent errors spike where the
susceptibilities go through zero, as one might expect.
Next, we consider the space of power law potentials de-

scribed in Eq. 10 where we choose the coe�cient such that
bound states always exist, that is to say that the potential
is negative for q < 0 and positive for q > 0. Due to the
choice of intrinsic units as described by Eq. 5, each power
law potential has an identical susceptibility regardless of the
strength of the potential�this is an equivalent statement to
claiming that the intrinsic susceptibilities are scale invariant.
To comment on all of these systems, we limit our fo-

cus to the zero-frequency susceptibilities with �ve bound
states determined from the potential numerically using �nite-
di�erences. This must be applied quite carefully for the
strongly singular potentials as the classical turning points
for the solutions begin to expand exponentially as the power-
law exponent approaches q = −2. Fig. 4(a) shows how the
linear polarizability calculated with the �ve state model com-
pares with the exact result. No comparison with the proxy
state is shown here as the algorithm we employ would identi-
cally force agreement for the zero-frequency results discussed
here. The most error due to truncation exists for the systems
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FIG. 4: The o�-resonant (a) linear polarizability and the
(b) �rst hyperpolarizability for potentials of the

form V ∝ xq, comparing the sum-over-states(SOS)
result for a 5 state model, the true result using

Dalgarno-Lewis(DL), and the SOS
hyperpolarizability result including the proxy state.

which admit unbound states�the truncation error is minimal
for in�nitely bound systems.
Fig. 4(b), on the other hand, shows the �ve state hyper-

polarizability, the exact result from DL, and the �ve state
model with the proxy state included. Here we continue to
see little e�ect of truncation on the strongly bound poten-
tials, but we see signi�cant deviations for the q < 0 systems.
The proxy state determined from only �ve bound states does
a remarkable job of correcting the truncation error up to

potentials as singular as the Coulomb potential where the
uncorrected SOS result shows qualitatively di�erent behav-
ior in this regime. This o�-resonant result shows that the
proxy state algorithm presented here is particularly e�ective
at capturing the contributions to the nonlinear optical sus-
ceptibilities from the unbound states which couple to the
ground state.

Conclusion. We have shown that with a �nite measur-
able quantities, one can use the TRK sum rules to produce
a proxy state which accounts for truncation of the SOS per-
turbation calculation of the nonlinear optical susceptibilities.
This algorithm requires a �nite set of well determined tran-
sition elements and energies which can be determined from
linear spectroscopic measurements as well as the o�-resonant
linear polarizability.

We have shown that for the test case of a Coulomb poten-
tial con�ned to the positive side of one-dimensional space,
this proxy state algorithm can signi�cantly reduce the trun-
cation error attributed to the unbound states of the system
throughout the dispersion of the linear and �rst nonlinear
susceptibilities. This test case shares many of the features
of more physical electronic systems and is therefore evidence
that this algorithm may provide signi�cant improvements for
careful calculations of the nonlinear susceptibilities. Though
we have focused here on the polarizability and the �rst hy-
perpolarizability, this algorithm simply generates an addi-
tional transition element and can thus be applied to any
SOS calculation of higher order susceptibilities or any other
perturbative theories involving position transition elements.

Finally, we have shown the distinct correction obtained for
the class of singular power law potentials when applying the
proxy state correction. This shows the particularly useful-
ness of this algorithm when the system in question contains
bound states which closely resemble and rapidly approach
in energy those unbound states near zero-energy. While this
likely has the largest impact on theoretical studies of the
nonlinear optical susceptibilities from �rst principles, these
concepts may also �nd use in practical cases where contin-
uum states are thought to contribute to the nonlinear optical
response but are di�cult to calculate explicitly.
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