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Using the sum rules, the sum-over-states expression for the diagonal term of first hyperpolarizability can be
expressed as the sum of three-state interaction terms. We study the behavior of a generic three-state term to
show that it is possible to tune the contribution of resonant terms by tuning the spectrum of the molecule.
When extrapolated to the off-resonance regime, the three-state interaction terms are shown to behave in a similar
manner as the three-level model used to derive the fundamental limits. We finally show that most results derived
using the three-level ansatz are general, and apply to molecules where more than three levels contribute to the
second-order nonlinear response and/or are far from optimization. © 2016 Optical Society of America
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1. INTRODUCTION

Materials with tailored second-order nonlinear optical proper-
ties are needed for the advance of diverse applications such
as information technology [1], bioimaging [2–4], and cancer
therapy [5]. The nonlinear optical response in organic mate-
rials is originated at the molecular level, and the response
of the bulk is related to the molecular response by simple
addition rules. This means that organic materials can
achieve the fastest response, and also that there is an immense
pool of potential organic structures suitable for synthesis
(on the order of Avogadro’s number) [6,7]. With such a
huge number of potential structures, a better understanding
of the underlying mechanism behind the molecular response
is needed in order to tailor organic materials to their full
potential.

Applying the “three-level ansatz” (described below) one
can show that the strength of the molecular nonlinear optical
response is limited by the number of electrons. When these
electrons are optimally arranged, the fundamental limit is
reached [8–11]. The quantum limits analysis has been used
to determine molecular efficiency, highlight the mechanism
that determines the molecular response [3,12–20], introduce
new paradigms for optimization [17,21–26], establish funda-
mental scaling laws [27,28], and identify the best molecular
candidates for second-order nonlinear applications [29]. In this
paper, we generalize these results by deriving expressions that
apply to all molecules that can be represented by a second-order
nonlinear susceptibility, even when the three-level ansatz does
not apply.

2. THEORY

The property that quantifies the strength of a molecule’s
second-order nonlinear optical interaction is the first hyperpo-
larizability, βijk�−ω1;ω1;ω2�, a third-rank tensor that depends
on two input frequencies, ω1 and ω2, with ω1 � ω2 � ωσ . A
sum-over-states expression for the first hyperpolarizability can
be obtained using time-dependent perturbation theory and the
Bogoliubov and Mitrolplsky method of averages, and was first
derived by Orr and Ward [30],

βijk�−ωσ ;ω1;ω2��−�ℏ�−2e3I1;2
X
m;n

0
� hrii0mhrkimnhrjin0
�Ωm0−ωσ��Ωn0−ω1�

� hrki0mhrjimnhriin0
�Ω�

m0�ω2��Ω�
n0−ωσ�

� hrki0mhriimnhrjin0
�Ω�

m0�ω2��Ωn0−ω1�

�
; (1)

where the prime in the sum indicates that the ground state is
excluded from the sum (n ≠ 0 and m ≠ 0), ℏ is the reduced
Planck constant, and �−e� is the charge of an electron. The
ith component of the position operator is represented by ri,
with matrix elements (between states jmi and ni)

hriimn � hmjrijni; (2)

and the operator I 1;2 averages over all terms generated by pair-
wise permutations of �i;ω1� and �j;ω2� in the expression.
Notice that we have used the notation Ωn0 � Ωn −Ω0, and
that the barred operator is defined as

O � O − hOi00: (3)
By assumption, the eigenvalues of the time-independent

Hamiltonian, H �0� (which describes the isolated molecule
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before the interaction with light is turned on), are complex to
allow for natural decay,

H �0�jni � ℏΩnjni � ℏ

�
ωn − i

Γn

2

�
jni; (4)

such that the energy of the eigenstate jni is given by ℏωn � En
and its inverse radiative lifetime is ℏΓn.

For molecules that are approximately one-dimensional (that
is, for molecules where the conjugated path has C∞v symmetry)
the diagonal term of the first hyperpolarizability dominates over
all other components. Choosing the geometry such that the
x-axis coincides with the axis of the molecule, the diagonal
component of the first hyperpolarizability can be expressed as

βxxx�−ωσ ;ω1;ω2�� �−e�3
X
mn

0x0mxmnxn0 ·D
�2�
mn�ω1;ω2�; (5)

where xmn � hmjrx jni and the dispersion factors are defined in
Eq. (6), where, for clarity, we have explicitly performed the
averaging indicated by I1;2.
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: (6)

Far away from resonances, Em0 ≫ ℏω1, Em0 ≫ ℏω2, and
Em0 ≫

ℏΓm
2 , so we can approximate Eq. (6) as

D�2�
mn ≈

3

EmgEn0
; (7)

such that, in the off-resonance regime, Eq. (5) is approximated by

βoffxxx ≈ �−e�3
X
mn

0 x0mxmnxn0
Em0En0

: (8)

The sum-over-states expressions for the first hyperpolariz-
ability [Eqs. (1), (5), and (8)] depend on an infinite set of tran-
sition dipole moments and energies. However, these parameters
are not independent. They are related to each other through the
Thomas–Kuhn sum rules that apply quite generally to most
quantum systems. The first sum rules were originally derived
by Thomas and Kuhn using a semiclassical approach [31,32].
Heisenberg derived them using quantum mechanics principles
[33], and they were generalized by Bethe and Salpeter [34].
Here we use the generalized sum rules as derived by Kuzyk
[8–11]. Choosing the geometry such that the x-axis coincides
with the axis of the molecule, ri � rx , and denoting x � hrxi,
the sum rules can be expressed asX

n

�2En0 − Ek0 − El0�xknxnl �
ℏ2N
m

δkl ; (9)

where N is the number of effective electrons in the system, and
δkl is the Kronecker delta. It is important to emphasize that the

sum rules apply quite generally to all molecules, as they are
derived with no assumptions about the electronic model.
The sum rules apply to the most general form of the
Hamiltonian for N electrons of mass m that interact through
electromagnetic forces. They hold for any scalar potential that is
a function of the position of the charges, spin angular momen-
tum and a linear function of the orbital angular momentum
[28]. This kind of potential is general enough that it can be
used to describe any kind of molecule.

We should also notice that Eq. (9) is actually an infinite set of
equations, depending on which specific values of �k; l� are
picked. However, since by definition of the inner product
xkn � x�nk, the sum rule that we obtain by picking k � s and
l � t is the complex conjugate of the sum rule that we would
obtain by picking k � t and l � s. This means that if k � l , the
corresponding sum rule is real. Also, in Eq. (9), the sum over the
dummy index n does include the ground state, while in the sum-
over-states expressions [Eqs. (1), (5), and (8)] the ground state is
excluded from the sum.

Applying the three-level ansatz (described below) to Eqs. (8)
and (9), one can show that the first hyperpolarizability is
bounded by the fundamental limit [8,10],

βoffxxx ≤ βmax
xxx �

ffiffiffi
34

p �
eℏffiffiffiffi
m

p
�

3 N 3∕2

E7∕2
10

; (10)

and that the expression of the off-resonant first hyperpolariz-
ability [Eq. (8)] simplifies to

βoffxxx�E; X � � βmax
xxx · f �E� · G�X �; (11)

where the functions f �E� and G�X � are defined as

f �E� � 1

2
�1 − E�3∕2�2� 3E � 2E2� (12)

and

G�X � �
ffiffiffi
34

p
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
�1 − X 4�

r
: (13)

The dimensionless parameters E and X are defined as

E � E10

E20

(14)

and

X � jx01jffiffiffiffiffiffiffiffiffi
ℏ2N
2mE10

q : (15)

The fundamental limit is obtained by applying the three-
level ansatz, which assumes that a three-level model accurately
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describes any quantum system whose nonlinear optical re-
sponse is close to the fundamental limit. In other words, the
three-level ansatz can be stated as [35] follows:

“When the hyperpolarizability of a quantum system is at
its fundamental limit, only three states contribute to the
response.”

The three-level ansatz has not been rigorously proven, but
the calculation of the quantum limits is consistent with exper-
imental data and with numerical studies. Experimentally, the
first hyperpolarizability of any molecule has always been
found to be below the quantum limit [12,13,21,22].
Numerical studies also show that the best quantum systems
have maximum hyperpolarizabilities that do not surpass the
quantum limit [36–40].

A. Dipole-Free Expression for the First
Hyperpolarizability

The sum-over-states expressions for the first hyperpolarizability
[Eqs. (1), (5), and (8)] have been extensively used to model the
second-order nonlinear response and to analyze experimental
data since they were introduced in 1971 [30]. However, the
sum-over-states expressions treat the set of fEn; xmng as inde-
pendent parameters, and we know that the sum rules impose
constraints over the set. Thus, the traditional sum-over-states
expressions are overspecified and require redundant informa-
tion in order to be evaluated. Furthermore, results based on
the optimization of the sum-over-states expressions will treat
the parameters as independent, which can lead to erroneous
conclusions.

A more compact sum-over-states expression that eliminates
some of the redundant information by incorporating the sum
rules was introduced by Kuzyk [41]. The expression is called
“dipole-free,” since it eliminates the explicit dependence on di-
polar terms (i.e., terms that require a change in dipole mo-
ment). We notice that by definition

xmn �
�
xmn; if m ≠ m
xnn − x00 � Δxn0; if m � n

; (16)

such that the traditional sum-over-states expression for the
diagonal term of the first hyperpoloarizability Eq. (5) can be
expressed as

βxxx�−ωσ ;ω1;ω2� � �−e�3
�X

n

0jxn0j2Δxn0 · D�2�
nn �ω1;ω2�

�
X
n

0X
m≠n

0x0nxnmxm0 · D
�2�
mn�ω1;ω2�

�
:

(17)

The first sum is made up of all the terms that explicitly require a
change in dipole moment (Δxn0 � xnn − x00) in order to con-
tribute. These terms depend only on the transition moments of
two states (ground and n), while the terms in the second sum
connect transition moments of three different states (ground,
n and m, with n ≠ m).

To derive the dipole-free expressions, we must consider the
sum rules that we obtain by picking l � 0 and k ≠ 0 in Eq. (9),
and multiplying the resulting expression by x0k:

X
n≠0
n≠k

�2En0 − Ek0�x0kxknxn0 � Ek0jxk0j2Δxk0 � 0: (18)

Rearranging terms we arrive at

jx0nj2Δxn0 � −
X
n≠0
n≠k

2Em0 − En0

En0
x0nxnmxm0; (19)

where by assumption n ≠ 0. Substituting Eq. (19) into
Eq. (17) leads to the dipole-free expressions for the first hyper-
polarizability [41],

βxxx�−ωσ ;ω1;ω2� � �−e�3
X
n≠0
n≠k

0x0nxnmxm0 ·H
�2�
nm; (20)

where we have defined the energy terms:

Hnm �
�
D�2�

mn�ω1;ω2� −
�2Em0 − En0�

En0
· D�2�

nn �ω1;ω2�
�
:

(21)

For simplicity of notation, we have omitted the dependence on
the input frequencies in the definition of Hnm.

It is important to notice that the only new assumption that
has been made in the derivation of Eq. (20) from Eq. (5) is that
the �k; 0� sum rules with k ≠ 0 are obeyed. As discussed before,
the sum rules have been shown to apply to the most general form
of the Hamiltonian for N electrons of mass m that interact
through electromagnetic forces. They hold for any scalar poten-
tial that is a function of the position of the electrons, spin angular
momentum and a linear function of the orbital angular momen-
tum [28]. Therefore, they apply quite generally to all molecules.
Only exotic potentials that are not physically meaningful can
lead to violation of the generalized sum rules. Furthermore, while
truncation of the sum rules to the contribution of few states
might lead to inaccuracies [42], the derivation of the dipole-free
expression does not assume truncation of the sum rules, and
therefore the expression is exact.

3. RESULTS

The dipole-expression for the first hyperpolarizability is still
overspecified in the sense that it does not take into account
the relationship between pairs of transition moments,

xnm � hnjx̂jmi � �hmjx̂jni�� � x�mn; (22)

which follows from the definition of the inner product and the
fact that the position operator x̂ is real [43], and therefore al-
ways applies. This implies that the products of transition mo-
ments that appear in Eq. (20) are connected through

x0nxnmxm0 � �x0mxmnxn0��: (23)

Our next goal is to use the relationships between the transition
dipole moments to further simplify Eq. (20). This is very useful
when the transition dipole moments are real, as we shall see
below, and leads to some general results.

By explicitly pairing the terms that are connected through
Eq. (23), we can rewrite the expression as
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βxxx�−ωσ ;ω1;ω2�
��−e�3

X
n

0X
m>n

0�x0mxmnxn0 ·Hmn�x0nxnmxm0Hnm�

��−e�3
X
n

0X
m>n

0�x0mxmnxn0 ·Hmn��x0mxmnxn0�� ·Hnm�:

(24)

The advantage of Eq. (24) is that now the expression for the
first hyperpolarizability is expressed as a sum, where each term
includes all the possible contributions of three specific states
(ground j0i, jni, and jmi). Also, by connecting the conjugated
transition moments, we have reduced the number of explicit
terms that need to be evaluated to compute the first hyperpo-
larizability by a factor of 2.

More importantly, Eq. (24) clearly highlights how the second-
order nonlinear optical response is determined by three-state
interactions. In fact, the minimum number of states that must
have nonzero transition moments is three. In other words, a strict
two-level model (that considers only the contributions of two
states) cannot lead to second-order nonlinear optical response.
However, a typical approximation for the traditional expression
of the first hyperpolarizability is taken by assuming that the con-
tribution of two states dominate the response [44]. The two-level
model has been shown to be unphysical for molecules that
cannot be approximated as one-dimensional systems [45–47].
However, according to Eq. (24) [or Eq. (20)], in order to be
consistent with the sum rules, at least three levels must contrib-
ute to the response, even for structures that can be approximated
to be one-dimensional.

A. Real Transition Dipole Moments

We will now make use of a theorem concerning time invari-
ance, as stated by Sakurai [48]: “Suppose the Hamiltonian is
invariant under time reversal and the energy eigenstate jni is
nondegenerate; then the corresponding energy eigenfunction
is real.”

First, we notice that in any one-dimensional system, the
solutions to the Schrödinger equation are nondegenerate; so
as long as our approximation of treating the system as one-
dimensional holds, this condition is fulfilled. Also, if we
assume that the Hamiltonian that describes the molecule is
conservative, then we can apply the theorem and conclude that
the eigenfunctions are real. More generally, we can assume that
the eigenfunctions are real when the potential function depends
on operators that are time-reversal invariant (such as position,
energy, electric field, electric polarization, or charge density).
The assumption will not apply for potentials that depend on
quantities that are not invariant under time reversal (such as
angular momentum or magnetic field). Therefore, the follow-
ing results will apply generally to molecules where relativistic
and magnetic effects can be ignored.

With real eigenfunctions, the transition dipole moments
have to be real, which implies that x0nxnmxm0 � x0mxmnxn0,
such that Eq. (24) is simplified to

βxxx�−ωσ ;ω1;ω2� � �−e�3
X
n

0X
m>n

0x0nxnmxm0 · Fnm; (25)

with

Fnm � Hmn �Hnm: (26)

Thus, if the transition dipole moments are real, each term
in the sum can be written as the product of a function that
explicitly depends on transition dipole moments and a function
that explicitly depends on energies. Using Eq. (21), the energy
functions Fnm can be expressed as

Fnm �
�
D�2�

mn�ω1;ω2� −
�2Em0 − En0�

En0
· D�2�

nn �ω1;ω2�

� D�2�
nm�ω1;ω2� −

�2En0 − Em0�
Em0

· D�2�
mm�ω1;ω2�

�
:

(27)

We notice that the contributions from the dispersion terms D�2�
nn

and D�2�
mm are “weighted” by functions that depend on energy

ratios. The contribution from D�2�
nn is weighted by the factor

f weight
nn � −

�2Em0 − En0�
En0

; (28)

which approaches its maximum value, −1, if the two energies are
very close to each other, and decreases without bound as the
difference of energies increases. The contribution from D�2�

mm

is weighted by the factor

f weight
mm −

�2En0 − Em0�
Em0

; (29)

which approaches its minimum value, −1, when the two energies
are very close, reaches zero when the difference of energies is such
that 2En0 � Em0, and approaches its maximum value, 1, when
the difference of energies becomes very large. This suggests that it
is possible to selectively tune the contribution of resonant terms
by targeting molecules with a specific spectrum.

B. Resonant Response

To determine how the weighting factors affect the overall reso-
nant response, we will consider some significant combinations of
energies. Typical values for the energy differences on a molecule
range from 1 to 3 eV, with linewidths (ℏΓn) ranging between 0.1
and 0.5 eV. Let us consider first the effect of the energy spectrum
by setting all the linewidths to ℏΓn � ℏΓm � 0.1 eV, and three
significant energy distributions, as shown in Figs. 1–3.

Figure 1 plots the absolute value of Fnm as a function of
the photon energies with Em0 � 1.55 eV and En0 � 1.5 eV.
The weighting factors are f weight

nn � −1.07 and f weight
mm � −0.9.

The linewidths are set to 0.1 eV. As expected, the resonances
occur when the combination ℏ�ω1 � ω2� matches one of the
energy values. In this case, the energy values are very close, such
that the two resonances add up and the net result looks like a
single resonance. The highest resonant values are achieved when
one of the photon energies approaches 0 eV, where jFnmj peaks
and reaches its maximum value (≈125 eV−2). If the resonance is
such that none of the photon energies is close to zero, jFnmj
decreases significantly (about an order of magnitude). Finally,
if the photon energies miss the resonance by more than
0.3 eV, jFnmj becomes pretty flat and approaches zero.

Figure 2 plots the absolute value of Fnm as a function of the
photon energies with Em0 � 1.8 eV and En0 � 0.9 eV. The
weighting factors become f weight

nn � −3.0 and f weight
mm � 0.
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The linewidths are set to 0.1 eV. We can distinguish three
mean resonances occurring when ℏ�ω1 � ω2� ≈ En0,
ℏω1 ≈ En0, or ℏω2 ≈ En0. Interestingly, we do not see any res-
onances when the photon energies match Em0, which must be
due to the fact that the dispersion term D�2�

mm�ω1;ω2� does not
contribute to the energy function. Overall, the effects of the
resonances have been scaled by a factor of 5 when compared
with Fig. 1. Again, the peaks occur when one of the photons
approaches 0 eV, and the other matches En0. This is the regime
of operation for the electro-optic effect. There is also another
significant peak when each photon energy matches En0, which
corresponds to the regime of operation of second-harmonic
generation.

Figure 3 plots the absolute value of Fnm as a function of the
photon energies with Em0 � 1.8 eV and En0 � 0.5 eV. The

weighting factors are f weight
nn � −5.2 and f weight

mm � 0.35. The
linewidths are set to 0.1 eV. Now we can see resonances when
the photon energies match both En0 and Em0, but the reso-
nance effects due to En0 are enhanced. As before, the maxima
occur when one of the photon energies approaches 0 eV, and
the other matches En0 (electro-optic regime).

Further exploration confirms that trends shown in Figs. 1–3
are general and do not depend on the specific values of Em0 and
En0. The resonant effects are modulated through the weighting
functions. Close to degeneracy, the resonant effects are mini-
mized, which must be due to an overall cancellation effect
(quantum interference). As the energy difference increases, the
resonant effects are enhanced, especially resonances associated
with the smallest energy, En0, which is explained by the fact that
f weight
nn becomes large in magnitude. In all the cases, the best re-

sponse corresponds to the regime of operation of the electro-
optic effect. Interestingly, the best energy spacing for on-resonant
second-harmonic generation occurs when the energies are spaced
like a two-state quantum harmonic oscillator (Em0 � 2En0).
This could be used to design more efficient molecules for
second-harmonic generation imaging, where the effects of reso-
nance can be exploited to achieve spectroscopic selectivity [3].

In general, as the linewidths broaden, the resonance effects
dilute and the absolute value of jFnmj decreases dramatically.
Figure 4 plots the absolute value of Fnm as a function of the
photon energies with Em0 � 1.55 eV and En0 � 1.5 eV, with
the linewidths set to 0.5 eV. If we compare it with Fig. 1 (with
the same energy values), we can see how although the overall
shape of the function is similar, the broadening of the line-
widths by a factor of 5 results in a decrease of the peak response
by 2 orders of magnitude.

Figure 5 plots the absolute value of Fnm as a function of the
photon energies with Em0 � 1.8 eV and En0 � 0.5 eV, with
linewidths set to 0.5 eV. In comparison with Fig. 3 (with the
same energy values), the shape of the resonances has been
mostly diluted, and the peak values due to the resonances at
En0 are 20 times smaller.

Fig. 2. Plot of the absolute value of Fnm [Eq. (28)] as a function of
the photon energies, with Em0 � 1.8 eV, En0 � 0.9 eV, and line-
widths set to 0.1 eV.

Fig. 3. Plot of the absolute value of Fnm [Eq. (28)] as a function of
the photon energies, with Em0 � 1.8 eV, En0 � 0.5 eV, and line-
widths set to 0.1 eV.

Fig. 1. Plot of the absolute value of Fnm [Eq. (28)] as a function of
the photon energies, with Em0 � 1.55 eV, En0 � 1.5 eV, and line-
widths set to 0.1 eV.
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In conclusion, both the ratio of energies and the magnitudes
of the linewidths have a strong influence on the shape and mag-
nitude of the energy function Fnm. By tuning the energy ratio,
we can selectively minimize or enhance the resonance effects.
With regard to the photon energies, the highest response is al-
ways achieved in the electro-optic regime. However, if we want
to improve the resonant response for second-harmonic appli-
cations, we must design molecules with Em0 � 2En0.

C. Off-Resonance Response

Far away from resonances, the dispersion factors Dmn are ap-
proximated by Eq. (6), such that the energy functions become

F off
nm � 3

�
2

Em0En0
−
�2Em0 − En0�

E3
n0

−
�2En0 − Em0�

E3
m0

�
: (30)

First, we notice that F off
nm diverges when Em0 → ∞, which is

due to the divergence of the weighting function f weight
nm .

Experimentally, the values of the first hyperpolarizability are
clearly bounded. Furthermore, in order for the sum-over-states
approach to be valid, the full expression must be convergent.
Thus, there must be some other mechanism that prevents this
divergent behavior. Taking a hint from the derivation of the
quantum limits, the problem can be resolved if the dependence
on the transition dipole moments on energies is such that the
divergence is canceled [8]. We can indeed prove this using the
remaining set of sum rules.

1. Generalized Scaling Laws

The derivation of the dipole-free expression [Eq. (20)] uses
the subset of sum rules that is obtained by picking l � 0
and k ≠ 0 in the general expression [Eq. (9)]. If instead, we
pick l � k � m we obtain the following subset:

2m
ℏ2N

·
X
n�0

�En0 − Em0�jxnmj2 � 1: (31)

The expression on the left must remain bounded (and equal
to 1) for any combination of energies, and in the limiting
cases when En0 → Em0 and j�En0 − Em0�j → ∞. This leads
to the following generalized scaling law for the transition dipole
moments:

2m
ℏ2N

jxmnj2 ∝
1

jEm0 − En0j
; (32)

which implies

jxmnj ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2N
2m

1

jEm0 − En0j

s
: (33)

Using Eq. (33), we can determine the energy dependence of a
generic term in the sum over states as

x0mxmnxn0 · F off
nm ∝

 ffiffiffiffiffiffiffiffiffi
ℏ2N
2m

r !
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Em0En0�Em0 − En0�

s
· F off

nm;

(34)

where we have used jEm0 − En0j � �Em0 − En0�, since m > n.
Substituting the expression for F off

nm [Eq. (30)] into Eq. (34)
leads to

�−e�3x0mxmnxn0 · F off
nm � knm

 
e

ffiffiffiffiffiffiffiffiffi
ℏ2N
2m

r !
3

1

E7∕2
n0

· f
�
En0

Em0

�
;

(35)

where knm must be a function of n and m that does not depend
explicitly on energies, and f �E� is the same energy function
that one obtains using the three-level ansatz, but now applied
to the generalized energy ratio En0∕Em0. This ratio is bounded
between 0 and 1, since by definition Em0 > En0. The behavior
of f �E� is well known. For all possible ratios of energies, f �E�
is a well-defined monotonically increasing function that reaches
its maximum value at f �0� � 1 and its minimum value at
f �1� � 0. This is a remarkable result, which shows that aside
from the scaling factor E−7∕2

n0 , the energy dependence of a
generic term in the sum over states mirrors the energy depend-
ence that is obtained using the three-level ansatz. However,

Fig. 4. Plot of the absolute value of Fnm [Eq. (28)] as a function of
the photon energies, with Em0 � 1.55 eV, En0 � 1.5 eV, and line-
widths set to 0.5 eV.

Fig. 5. Plot of the absolute value of Fnm [Eq. (28)] as a function of
the photon energies, with Em0 � 1.8 eV, En0 � 0.5 eV, and line-
widths set to 0.5 eV.
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while the three-level ansatz assumes that only three states con-
tribute to the response, no such assumption has been used to
derive Eq. (35).

In fact, if we define the generalized energy function as

f gen
nm �

�
E10

En0

�
7∕2

· f
�
En0

Em0

�
; (36)

we can rewrite the contribution of a generic term in the sum
over states as

�−e�3x0mxmnxn0 · F off
nm � βmax

xxx · Ggen
nm · f gen

nm ; (37)

where Ggen
nm is another function that results from combining the

factor knm with fundamental constants. By construction, Ggen
nm is

bounded and does not depend explicitly on energies. Also, since
by definition f gen

mn is dimensionless, Ggen
mn must also be a dimen-

sionless quantity.
In conclusion, using the sum rules, the expression for βoffxxx

can be written as the sum of three-state interactions (ground
and two excited states). The functional behavior of each
three-state contribution is the same and can be expressed as
the product of a function that depends on the distribution
of transition dipole moments, a function that only depends
on energy ratios and the fundamental limit. This generalizes
the results derived using the three-level ansatz [Eqs. (10)–(13)],
but applies to all systems regardless of how many states contrib-
ute to the response. Notice that when the minimum amount of
states contributes to the response (m � 2 and n � 1), f gen

mn

does automatically become f �E�, but Ggen
mn does not become

G�X � unless further assumptions are made.

4. APPLICATIONS

A. Generalized Scaling Law for the First
Hyperpolarizability

Using Eq. (37), the sum-over-states expression becomes

βoffxxx � βmax
xxx ·

�X0

n

X0

m>n

Ggen
mn · f gen

mn

�
: (38)

Since by construction Ggen
mn · f gen

mn is a dimensionless quan-
tity, Eq. (38) implies that the first hyperpolarizability scales in
the same manner as the fundamental limit:

βoffxxx ∝ βmax
xxx ∝

N 3∕2

E7∕2
10

: (39)

Alternatively, we can derive the scaling law for the first
hyperpolarizability using nondimensionalization techiques.
We begin by explicitly writing Eq. (25) in the off-resonance
regime as

βoffxxx � �−e�3
X0

n

X0

m>n

x0mxmnxn0 · F off
nm (40)

and introduce the following dimensionless parameters [28]:

ξnm � xnmffiffiffiffiffiffiffiffiffi
ℏ2N
2mE10

q : (41)

This yields

βoffxxx � �−e�3
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2N
2mE10

s 1
A3X0

n

X0

m>n
ξ0mξmnξn0 · F off

nm; (42)

or

βoffxxx � 6

�
eℏffiffiffiffiffiffi
2m

p
�

3 N 3∕2

E7∕2
10

×
X0

n

X0

m>n
ξ0mξmnξn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En0Em0�Em0 − En0�

p

·
�
E10

En0

�
7∕2

f
�
En0

Em0

�
; (43)

where we have made use of the following identity:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En0Em0�Em0 − En0�

p · F off
nm � −6 · f

�
En0

Em0

�
1

E7∕2
n0

: (44)

Recalling Eq. (10), and introducing the dimensionless param-
eters ei � Ei0

E10
[28], we can express Eq. (44) as

βoffxxx

βmax
xxx

� 33∕4ffiffiffi
2

p
X0

n

X0

m>n

ξ0mξmnξn0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enem�em − en�

p
· f gen

nm : (45)

By comparing Eqs. (38) and (45), we conclude that Ggen
mn must

be defined as

Ggen
mn � 33∕4ffiffiffi

2
p ξ0mξmnξn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enem�em − en�

p
: (46)

As expected, Ggen
mn is a dimensionless function. Furthermore, if

we rewrite Eq. (33) as

ξmn ∝
1

�em − en�
; (47)

it becomes clear from the definition of Ggen
mn that the energy

dependence is canceled, such that (also as expected) Ggen
mn does

not depend explicitly on energies.
In conclusion, nondimensionalization techniques confirm

the previous results and provide for a general expression for
the Ggen

mn function.

B. Clipped Harmonic Oscillator

In order to understand better how Ggen
mn and f gen

mn determine
the first hyperpolarizability, let us investigate their behavior
of the “clipped harmonic oscillator” (CHO) model, an exactly
solvable model that yields jβoffxxx j ≈ 0.57 · βmax

xxx [12,49].
It is interesting to consider first the regular harmonic

oscillator, where the potential is given by V �x� � 1
2mω

2. In
this case, the eigenenergies are given by En � �n� 1∕2�ℏω
with n � 0; 1; 2; � � � and the only nonzero transition dipole
moments are

xm�m−1� �
ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Em0 − E �m−1�0

s
: (48)

Clearly, Eq. (39) is obeyed. However, all the combinations of
three states that contribute to Ggen

mn contain a null transition
dipole moment such that Ggen

mn � 0 for all values of m and
n. This is what we expect, since due to symmetry, the simple
harmonic oscillator yields a null first hyperpolarizability.
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The CHO is defined by the nonsymmetric potential

V �x� �
�

∞ for x < 0
mω2x2

2 for x ≥ 0: (49)

The eigenergies are given by En � �2n� 3∕2�ℏω with
n � 0; 1; 2; � � � and the transition dipole moments are given
by [12,49]

xij �
ffiffiffiffiffiffiffiffiffiffi
ℏ

πmω

r
· φ�i; j�; (50)

with the dimensionless function φ�i; j� defined as

φ�i;j��2−�i�j� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2i�1�!�2j�1�!p ·
Z

∞

0

H 2i�1�λ�λH 2j�1�λ�dλ;

(51)

where Hn�x� is the nth order Hermite polynomial, and with
i � 0; 1; 2; � � � and j � 0; 1; 2; � � � .

Using m > n, we confirm the predicted dependence on en-
ergy (this follows from the fact that the factorial �2m� 1�!
must contain the factor 2�m − n� since m > n):

xmn ∝
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�m − n�ℏω
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Em0 − En0�
p : (52)

Substituting Eq. (50) into Eq. (46) we obtain

Ggen
mn �CHO� � 33∕42ffiffiffi

π
p φ�0;m�φ�m;n�φ�n;0� ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m · n · �m − n�

p
:

(53)

The energy functions are the same as for the simple harmonic
oscillator and are given by

f gen
nm �CHO� � 1

n7∕2
· f �n∕m�: (54)

The partial sums as a function of the number of added states
to the sum are plotted in Fig. 6. As expected, the total sum (the
product of G · f ) converges quickly to 0.57. The convergence
is fast, such that the contribution of the first three-state con-
tribution is about 70% of the total sum. The partial sum of
Ggen

mn �CHO� terms converges following a similar trend to
1.2. However, the partial sum of generalized energy functions
does not converge, but increases linearly with the number of
states added to the sum. This might seem puzzling at first, since
f gen
mn ≤ 1, but this does not guarantee convergence. For exam-

ple, the infinite sum
P�1∕n� does not converge. This means

that for the CHO, the convergence of the total sum is due only
to the convergence of the transition dipole terms, Ggen

mn .

C. Optimization and the Three-Level Ansatz

Now let us look for potential strategies to optimize the first
hyperpolarizability.

We consider first the generalized energy functions. From the
definition [Eq. (28)], it follows that 0 ≤ f gen

mn ≤ 1 and that f gen
mn

decreases in magnitude as n becomes large. In the limit when
Em0 and En0 approach infinity, f

gen
mn approaches zero. However,

this does not imply that the partial sums of f gen
mn must converge,

since, as we shall see, when m and n become large, there are
many more contributions to the sum over states.

If we assume that a specific term f gen
ij is optimized (i.e.,

Ei0 ≫ Ej0), then any term of the form f gen
jk has to be far from

optimization (since j > k implies Ej0 > Ek0). In other words, if
we try to optimize one generalized energy function term, we
immediately force many other terms to be far from optimiza-
tion. So, when trying to optimize the first hyperpolarizability,
we either concentrate on optimizing a few terms, and let the
other contributions be negligible; or if we want many terms
to contribute, we will be forced to use energy functions that
are far from optimization.

With regard to the generalized transition dipole functions
Ggen

mn , we first notice that using 0 ≤ f gen
mn ≤ 1, we can set the

partial sums of jGgen
mn j as an upper bound upon the magnitude

of the first hyperpolarizability:

jβoffxxx j � βmax
xxx ·

X0

n

X0

m>n

jGgen
mn j · jf gen

mn j≤ βmax
xxx ·

X 0

n

X0

m>n

jGgen
mn j:

(55)

This inequality holds for any number of states included in the
partial sums, and not only when the series converge. Indeed, we
can see that this is the case for the CHO by inspecting Fig. 6.

In general, the values of Ggen
mn can be positive or negative.

Since 0 ≤ f gen
mn ≤ 1, the sign of the generic term in sum-

over-states expression [Eq. (38)] is determined by the sign
of Ggen

mn . In most situations, the contributions of different terms
to the total sum will partially cancel each other out. This sug-
gests that there must be an optimal number of contributing
states where the positive effects outbalance the negative effects.

In any case, we can look at the problem of optimizing the
first hyperpolarizability from a different perspective, by simply
counting the number of parameters that need to be manipu-
lated in order to achieve optimization. Let us assume that
the off-resonant first hyperpolarizability is optimized globally
by a specific set of energies and transition moments, and that
a total of ntot states is significantly contributing to the first
hyperpolarizability (such that we can ignore the contribution
of higher states). This means that the sum over states is repre-
sented by the contributions of �ntot − 2��ntot − 1�∕2 terms,
and each term depends on five parameters (three transition

Fig. 6. Partial sums as a function of the number of states added in
the expression for the CHO:

P
f gen
mn (triangles),

P
Ggen

mn (circles), andP
Ggen

mn · f gen
mn (squares).
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dipole moments and two energies). Thus, the number of spe-
cific energy and transition dipole moment values that need to
be finely tuned in order to achieve optimization scales as
5�ntot − 2��ntot − 1�∕2. Table 1 lists the number of parameters
that determine the first hyperpolarizability as a function of the
total number of states that contribute to the sum (including
ground). Thus, although global optimization might be feasible
computationally, such a strategy will be very hard (if not impos-
sible) to implement in the physical world if it requires the fine-
tuning of a large set of energies and transition dipole moments,
as it would need a level of control of molecular properties that is
beyond our current capabilities.

However, we can choose to optimize the first hyperpolariz-
ability locally by focusing on the optimization of one of the
terms in the sum. In this case, we cannot guarantee that the
first hyperpolarizability is reaching a global maximum, but
the local maximum that we find can be achieved by tuning
the smallest possible set of energies and transition dipole mo-
ments. According to Table 1, this goal is much more reasonable
and easier to implement than any global optimization prescrip-
tion that requires the contribution of more than three states.
Since all measured compounds fall below the fundamental
limit, we can focus first on designing structures that optimize
the response locally, while we learn more about what is required
to optimize the first hyperpolarizability globally.

As expected, when the expression for the first hyperpolariz-
ability and the sum rules are well represented by contributions
of only three states (including ground), optimization is
achieved in the same manner as predicted using the three-level
ansatz: Ggen

mn is optimized when ξn0 �
ffiffiffi
3−4

p
, where it reaches

unity, and f gen
mn is optimized when the energy ratio approaches

zero. In the specific case when n � 1 andm � 2,Ggen
21 becomes

G�X �, and f gen
21 becomes f �E�, such that we recuperate

Eqs. (11)–(13). If we concentrate on optimizing the response
of any other set of states, the maximum that we obtain is given
by �E10

En0
�7∕2 · βmax

xxx .
Finally, we note that although by counting energies and

transition dipole moments the number of parameters scales
quadratically with the number of contributing states, these have
to be overspecified, as they are still connected through the sum
rules. In fact, we can show that every first hyperpolarizability
(that is below the fundamental limit) can be represented by two
parameters, X̂ and Ê , defined such that the following identity is
obeyed:

G�X̂ � · f �Ê� �
X0

n

X0

m>n

Ggen
mn · f gen

mn � βoffxxx

βmax
xxx

≡ βint : (56)

As long as the hyperpolarizability is below the fundamental
limit we can always solve for X̂ and Ê . This is in agreement
with independent findings that at most two parameters are im-
portant for the optimization of the first hyperpolarizability with

one-dimensional potential [50,51]. It also confirms the validity
of the quantum limits analysis for the intrepretation of exper-
imental data [12,13]. When all the experimental data (βint ,
G�X � and f �E�) are in agreement, we know that effectively
three states dominate the response with X � X̂ and E � Ê .
If it is not, we can immediately conclude that more than three
states contribute to the response and use G�X � and f �E� as
proxy functions.

5. CONCLUSIONS

We have shown (without approximations) that the dipole-free
sum-over-states expression for the diagonal component of the
first hyperpolarizability can be expressed as a sum where each
term in the sum includes all the possible contributions of three
specific states (including ground). This implies that in order to
be consistent with the sum rules, at least three levels must sig-
nificantly contribute to the response, even in structures where
the conjugated path is approximated to be one-dimensional.

In systems that were well approximated as one-dimensional
governed by a time-reversal invariant Hamiltonian, the transi-
tion dipole moments have to be real. This is the case if rela-
tivistic and magnetic effects can be neglected. When the
transition dipole moments are real, the expression for the first
hyperpolarizability is expressed as a sum of similar terms, where
each term is written as the product of three transition dipole
moments �x0mxmnxn0� and an energy function (Fnm). We show
that tuning the energy spectrum of a molecule allows us to
selectively minimize or enhance the resonant response. The
response is always largest in the regime of operation of the
electro-optic effect. However, the best spacing for on-resonant
second-harmonic generation occurs when the two energies are
spaced like a two-state quantum oscillator.

When we focus on the off-resonant response, we are able to
show that, aside from the factor E−7∕2

n0 , the energy dependence
of a general term is the same as what is predicted by applying
the three-level ansatz. We introduce generalized scaling laws for
the transition dipole moments and prove that the first hyper-
polarizability must scale in the same manner as the fundamen-
tal limit. In addition, we generalize the results derived using the
three-level ansatz by expressing every contribution of the sum
over states as a product of the fundamental limit and two di-
mensionless functions: Ggen

mn and f gen
mn . This allows us to better

discern how the distribution of transition dipole moments and
the energy spacing affect the first hyperpolarizability. We derive
this result first using the generalized scaling laws [Eq. (33)], and
then using nondimensionalization techniques without invok-
ing Eq. (33). Thus, even if the generalized scaling laws needed
to be corrected, the results will still hold.

We apply these principles to the CHO model and find the
convergence of the first hyperpolarizability sum is due only to
the convergence of the generalized transition dipole moment

Table 1. Number of Parameters (Energy and Transition Dipole Moments) that Determine the First Hyperpolarizability as
Function of the Total Number of States that Contribute to the Sum (Including Ground), ntot

Total Number of Contributing States (ntot) 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of parameters needed to determine βoffxxx 5 15 30 50 75 105 140 180 225 275 330 390 455
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functions, Ggen
mn , and that the first three-state contribution term

carries 70% of the weight in the infinite sum.
We then show that in a system with many contributing

levels, the generalized energy functions cannot all be optimized
at once. We also prove that the absolute value of the first hyper-
polarizability is bounded by the set of partial sums jGgen

mn j, and
that the sign of Ggen

mn determines the sign of every term in the
first hyperpolarizability sum. As the number of states that con-
tribute significantly to the sum over states increases, the chances
of partial cancellation between terms increases also, so we con-
jecture that there must be an optimal (finite) number of states
where the positive effects outbalance the negative effects. We
argue that although global optimization of the first hyperpolar-
izability might be possible mathematically when many states
contribute to the response, the strategy will be impractical if
it requires the fine-tune of many molecular parameters. A more
realistic approach is to optimize the response locally, by putting
our efforts into the optimization on one of the three-state
contributions, as prescribed by the three-level ansatz. Although
this might sound rather pessimistic, we should look into this
fine-tuning of quantum parameters as a challenge. The results
presented in this paper are a further step to help us understand
how to perform this fine-tuning and tailor molecules for
second-order nonlinear optical applications.

In conclusion, we have shown that most results derived
using the three-level ansatz are general and apply to molecules
where more than three levels contribute to the second-order
nonlinear response and/or far away from optimization. We also
confirm the validity of the fundamental limits analysis for the
interpretation of experimental data. Finally, we would like to
note that although the analysis presented in this paper focuses
on the molecular second-order nonlinear response, the gener-
alization to the macroscopic level is straightforward.

Acknowledgment. We acknowledge Skidmore College
for generously supporting this work by funding a full year
sabbatical (and sabbatical enhancement) leave.

REFERENCES

1. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic
electro-optic materials: state of the art and future prospects,” Chem.
Rev. 110, 25–55 (2010).

2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,”
Nat. Methods 2, 932–940 (2005).

3. K. De Mey, J. Perez-Moreno, J. Reeve, I. Lopez-Duarte, I. Boczarow,
H. Anderson, and K. Clays, “Strong wavelength dependence of
hyperpolarizability in the near-infrared biological window for second
harmonic generation by amphiphilic porphyrins,” J. Phys. Chem. C
116, 13781–13787 (2012).

4. I. López-Duarte, P. Chairatana, Y. Wu, J. Pérez-Moreno, P. M.
Bennett, J. E. Reeve, I. Boczarow, W. Kaluza, N. A. Hosny, S. D.
Stranks, R. J. Nicholas, K. Clays, M. K. Kuimova, and H. L.
Anderson, “Thiophene-based dyes for probing membranes,” Org.
Biomol. Chem. 13, 3792–3802 (2015).

5. E. Brown, T. McKee, E. di Tomaso, A. Pluen, B. Seed, Y. Boucher,
and R. K. Jain, “Dynamic imaging of collagen and its modulation in
tumors in vivo using second-harmonic generation,” Nat. Med. 9,
796–801 (2003).

6. C. Lipinski and A. Hopkins, “Navigating chemical space for biology
and medicine,” Nature 432, 855–861 (2004).

7. P. Ertl, “Cheminformatics analysis of organic substituents: identifica-
tion of the most common substituents, calculation of substituent

properties, and automatic identification of drug-like bioisosteric
groups,” J. Chem. Inf. Comput. Sci. 43, 374–380 (2003).

8. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular sus-
ceptibilities,” Phys. Rev. Lett. 85, 1218–1220 (2000).

9. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibil-
ities,” Opt. Lett. 25, 1183–1185 (2000).

10. M. G. Kuzyk, “Erratum: physical limits on electronic nonlinear molecu-
lar susceptibilities,” Phys. Rev. Lett. 90, 039902 (2003).

11. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibil-
ities: erratum,” Opt. Lett. 28, 135 (2003).

12. K. Tripathy, J. Perez-Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and
A. M. Kelley, “Why hyperpolarizabilities fall short of the fundamental
quantum limits,” J. Chem. Phys. 121, 7932–7945 (2004).

13. K. Tripathy, J. Perez-Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and
A. M. Kelley, “Erratum: “why hyperpolarizabilities fall short of the fun-
damental quantum limit” [J. Chem. Phys. 121, 7932 (2004)],” J. Chem.
Phys. 125, 079905 (2006).

14. J. Pérez-Moreno, I. Asselberghs, Y. Zhao, K. Song, H. Nakanishi, S.
Okada, K. Nogi, O.-K. Kim, J. Je, J. Matrai, M. De Mayer, and M. G.
Kuzyk, “Combined molecular and supramolecular bottom-up nano-
engineering for enhanced nonlinear optical response: experiments,
modelling and approaching the fundamental limit,” J. Chem. Phys.
126, 074705 (2007).

15. J. Zhou and M. G. Kuzyk, “Intrinsic hyperpolarizabilities as a figure of
merit for electro-optic molecules,” J. Phys. Chem. C 112, 7978–7982
(2008).

16. J. Pérez Moreno and M. G. Kuzyk, “Fundamental limits of the
dispersion of the two-photon absorption cross section,” J. Chem.
Phys. 123, 194101 (2005).

17. J. Pérez-Moreno, S.-T. Hung, M. G. Kuyzk, Z. Zhou, S. K. Ramini, and
K. Clays, “Experimental verification of a self-consistent theory of the
first-, second-, and third-order (non)linear optical response,” Phys.
Rev. A 84, 033837 (2011).

18. J. Pérez-Moreno and M. G. Kuzyk, “Comment on “Organometallic
complexes for nonlinear optics. 45. Dispersion of the third-order non-
linear optical properties of triphenylamine-cored alkynylruthenium
dendrimers”—increasing the nonlinear optical response by two orders
of magnitude,” Adv. Mater. 23, 1428–1432 (2011).

19. J. Pérez Moreno and K. Clays, “Fundamental limits: developing new
tools for a better understanding of second-order molecular nonlinear
optics,” J. Nonlinear Opt. Phys. Mater. 18, 401–440 (2009).

20. S. Van Cleuvenbergen, I. Asselberghs, E. Garca-Frutos, B. Gómez-
Lor, K. Clays, and J. Pérez-Moreno, “Dispersion overwhelms charge
transfer in determining the magnitude of the first hyperpolarizability in
triindole octupoles,” J. Phys. Chem. C 116, 12312–12321 (2012).

21. J. Pérez-Moreno, Y. Zhao, K. Clays, M. G. Kuzyk, Y. Shen, L. Qiu, J.
Hao, and K. Guo, “Modulated conjugation as a means of improving
the intrinsic hyperpolarizability,” J. Am. Chem. Soc. 131, 5084–5093
(2009).

22. J. Pérez-Moreno, Y. Zhao, K. Clays, and M. G. Kuzyk, “Modulated
conjugation as a means for attaining a record high intrinsic hyperpo-
larizability,” Opt. Lett. 32, 59–61 (2007).

23. J. Pérez-Moreno, Y. Zhao, K. Clays, and M. G. Kuzyk, “Modulated
conjugation as a means for breaching the apparent limit of the hyper-
polarizability,” arXiv:physics/0608300 (2006).

24. H. Kang, A. Facchetti, P. Zhu, H. Jiang, Y. Yang, E. Cariati, S.
Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu,
S. T. Ho, and T. J. Marks, “Exceptional molecular hyperpolarizabilities
in twisted π-electron system chromophores,” Angew. Chem. Int. Ed.
44, 7922–7925 (2005).

25. E. Brown, T. Marks, and M. Ratner, “Nonlinear response properties of
ultralarge hyperpolarizability twisted π-system donor-acceptor chro-
mophores. Dramatic environmental effects on response,” J. Phys.
Chem. B 112, 44–50 (2008).

26. G. S. He, J. Zhu, A. Baev, M. Samoć, D. L. Frattarelli, N. Watanabe, A.
Facchetti, H. Ågren, T. J. Marks, and P. N. Prasad, “Twisted π-system
chromophores for all-optical switching,” J. Am. Chem. Soc. 133,
6675–6680 (2011).

27. M. G. Kuzyk, “A bird’s-eye view of nonlinear-optical processes:
unification through scale invariance,” Nonlinear Opt. Quantum Opt.
40, 1–13 (2010).

E180 Vol. 33, No. 12 / December 2016 / Journal of the Optical Society of America B Research Article



28. M. G. Kuzyk, J. Perez-Moreno, and S. Shafei, “Sum rules and scaling
in nonlinear optics,” Phys. Rep. 529, 297–398 (2013).

29. J. Perez-Moreno, S. Shafei, and M. G. Kuzyk, “Using universal scaling
laws to identify the best molecular design paradigms for second-order
nonlinear optics,” arXiv:1604.03846 (2016).

30. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical
polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).

31. W. Thomas, “Über die Zahl der Dispersionselektronen, die einem
stationären Zustande zugeordnet sind (Vorläufige Mitteilung),”
Naturwissenschaften 13, 627 (1925).

32. W. Kuhn, “Über die Gesamtstärke der von einem Zustande ausgehen-
den Absorptionslinien,” Z. Phys. A 33, 408–412 (1925).

33. W.Heisenberg, “Über quantentheoretischeUmdeutung kinematischer und
mechanischer Beziehungen,” Z. Phys. A 33, 879–893 (1925).

34. H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-
Electron Atoms (Plenum, 1977).

35. S. Shafei and M. G. Kuzyk, “Paradox of the many-state catastrophe of
fundamental limits and the three-state conjecture,” Phys. Rev. A 88,
023863 (2013).

36. J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolariz-
ability to the limit,” Opt. Lett. 31, 2891–2893 (2006).

37. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing
potential energy functions for maximal intrinsic hyperpolarizability,”
Phys. Rev. A 76, 053831 (2007).

38. D. S. Watkins and M. G. Kuzyk, “The effect of electron interactions
on the universal properties of systems with optimized off-resonant
intrinsic hyperpolarizability,” J. Chem. Phys. 134, 094109 (2011).

39. D. S. Watkins and M. G. Kuzyk, “Optimizing the hyperpolarizability
tensor using external electromagnetic fields and nuclear placement,”
J. Chem. Phys. 131, 064110 (2009).

40. M. G. Kuzyk and D. S. Watkins, “The effects of geometry on the hyper-
polarizability,” J. Chem. Phys. 124, 244104 (2006).

41. M. G. Kuzyk, “A new and compact sum-over-states expression with-
out dipolar terms for calculating nonlinear susceptibilities,” arXiv:phys-
ics/0505006 (2005).

42. M. G. Kuzyk, “A heuristic approach for treating pathologies of
truncated sum rules in limit theory of nonlinear susceptibilities,”
arXiv:1402.3827 (2014).

43. D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Pearson
and Prentice-Hall, 2005).

44. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroani-
lines and their relations to the excited state dipole moment,” J. Chem.
Phys. 66, 2664–2668 (1977).

45. S. Bidault, S. Brasselet, J. Zyss, O. Maury, and H. Le Bozec, “Role of
spatial distortions on the quadratic nonlinear optical properties of
octupolar organic and metallo-organic molecules,” J. Chem. Phys.
126, 034312 (2007).

46. S. Brasselet and J. Zyss, “Relation between quantum and geometric
dimensionalities in molecular nonlinear optics: beyond the two-level
model for anisotropic systems,” J. Nonlinear Opt. Phys. Mater. 5,
671–693 (1996).

47. J. D. Weibel, D. Yaron, and J. Zyss, “Quantum and tensorial modeling
of multipolar nonlinear optical chromophores by a generalized equiv-
alent internal potential,” J. Chem. Phys. 119, 11847–11863 (2003).

48. J. J. Sakurai, Modern Quantum Mechanics, revised ed. (Addison-
Wesley and Longman, 1994).

49. J. Pérez Moreno, “Quantum limits of the nonlinear optical response,”
Ph.D. dissertation (Washington State University, 2004).

50. T. Atherton, J. Lesnefsky, G. Wiggers, and R. Petschek, “Maximizing
the hyperpolarizability poorly determines the potential,” J. Opt. Soc.
Am. B 29, 513–520 (2012).

51. C. J. Burke, J. Lesnefsky, R. G. Petschek, and T. J. Atherton,
“Maximizing the hyperpolarizability of 1D potentials with multiple
electrons,” arXiv:1602.05246 (2016).

Research Article Vol. 33, No. 12 / December 2016 / Journal of the Optical Society of America B E181


