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Abstract

One-dimensional potentials defined by V (S)(x) = S(S + 1)h̄2π2/[2ma2 sin2(πx/a)] (for integer

S) arise in the repeated supersymmetrization of the infinite square well, here defined over the

region (0, a). We review the derivation of this hierarchy of potentials and then use the methods

of supersymmetric quantum mechanics, as well as more familiar textbook techniques, to derive for

the first time new compact closed-form expressions for the normalized solutions, ψ
(S)
n (x), for all

V (S)(x) in terms of well-known special functions. We then suggest additional avenues for research

questions related to, and pedagogical applications of, these solutions, including the behavior of the

corresponding φ
(S)
n (p) for large |p| and general questions about the supersymmetric hierarchies of

potentials which include an infinite barrier.
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I. INTRODUCTION

Generations of physicists have been trained in quantum mechanics by repeated prac-

tice using a handful (literally, five or so) of familiar model systems, including the infinite

square well (hereafter ISW), harmonic oscillator (HO), hydrogen atom, and rigor rotator.

Some of these systems, including many with a high degree of symmetry, are amenable to

operator methods, such as the raising and lowering operator approach for the HO. These

systems, however, are typically solved using standard techniques involving the solution of

the Schrödinger equation in position space, enforcing the appropriate boundary conditions

to give the quantized energy levels, and often finding solutions in terms of special functions.

Given the very limited number of such tractable examples, it can be a welcome addition to

the literature of introductory quantum mechanics to find an entirely new class of potentials

which can be approached (and solved completely) using a variety of such methods.

One method of obtaining ‘new potentials from old’ is the use of supersymmetric quantum

mechanics1–8 (SUSYQM) which can generate new model systems which have the same energy

eigenvalue spectrum, save for missing the ground-state energy in the new ‘supersymmetrized’

version of the potential, the so-called partner or superpartner potential. For the hydrogen

atom, the supersymmetrization leads to a hierarchy4,9,10 of potentials all related to each

other by the supersymmetrization process.

It has been known for some time (if not generally appreciated) that the most familiar

of all model systems, the infinite square well, has just such a hierarchy4,9 of superpartner

potentials (with energy spectra related by supersymmetry) with a very simple form, namely

V (S)(x) =
S(S + 1)h̄2π2

2ma2 sin2(πx/a)
for 0 < x < a , (1)

where the original potential V ISW (x) (or S ≡ 0 case) is defined over the interval (0, a). In

this notation S = 1 corresponds to the first supersymmetrization of the ISW, S = 2 the

result of supersymmetrizing V (S=1)(x), and so forth. Beyond a mention of the ground-state

wave functions for this class of potentials,4,10 we have found no detailed discussions of the

solutions for this hierarchy, in the research, mathematical physics, or pedagogical literature.

For that reason, an exploration of this system, both in the derivation of the solutions,

and their interpretation, is the topic of this work where we present (for the first time)

closed-form expressions for all solutions, ψ
(S)
n (x), of this problem in terms of known special
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functions. We emphasize throughout the interplay of the application of formal methods

from supersymmetric quantum mechanics, more standard (textbook level) approaches using

differential equations, and the use of symbolic manipulation tools as pedagogical methods

in approaching this problem.

In the next section (II) we review the methods of supersymmetric quantum mechanics

and then in Sec. III we revisit the derivation of the fact that the potentials in Eq. (1) are the

result of repeated supersymmetrization of the ISW, but also showing how exact normalized

solutions to the general S case can be obtained by iteration. In Sec. IV we use standard

textbook methods based on differential equations to derive compact, closed-form solutions

for this hierarchy of potentials, for general S, which are written in terms of the Gegenbauer

polynomials. For S = 0, this expression also results in a new formulation of the usual ISW

wave functions

ψ(S=0)
n (x) = ψISW

n (x) =

√
2

a
Un−1[cos(πx/a)] sin(πx/a) , (2)

written in terms of Un[z], the Chebyshev polynomials of the second kind. Finally, in Sec. V,

we briefly discuss avenues for further exploration of this rich system, as well as open questions

regarding the hierarchies of supersymmetric extensions of other familiar one-dimensional

systems containing infinite wall potentials.

II. SUPERSYMMETRIC QUANTUM MECHANICS

Factorization methods11,12 have historically proved to be powerful tools in the solution

of a wide variety of problems in quantum mechanics and mathematical physics, especially

those with a high degree of symmetry. The connection to supersymmetry1–8,13 (hereafter

SUSY) and the interest in iso-spectral Hamiltonian systems has provided further motivation

for using such approaches in a variety of one-dimensional model systems.

We begin by assuming a generic one-dimensional potential, V (x), admitting a non-

degenerate ground-state solution, ψ0(x), with energy, E0. If we define a shifted potential

energy function, V (−)(x) ≡ V (x)− E0, we know, by construction, that ψ0(x) satisfies

Ĥ(−)ψ0(x) ≡
[
− h̄2

2m

d2

dx2
+ V (−)(x)

]
ψ0(x) = 0 , (3)

and that V (−)(x) has a zero-energy (E
(−)
0 = 0) ground-state. Since ψ0(x) is assumed known,
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we can use Eq. (3) to then write Ĥ(−) in the form

Ĥ(−) =
h̄2

2m

[
− d2

dx2
+
ψ′′0(x)

ψ0(x)

]
. (4)

If we define the ladder operators

Â ≡ h̄√
2m

(
d

dx
− ψ′0(x)

ψ0(x)

)
so that Â† ≡ h̄√

2m

(
− d

dx
− ψ′0(x)

ψ0(x)

)
, (5)

we then have Â†Â = Ĥ(−) and Ĥ(−) is factorizable.

While Â†Â = Ĥ(−) now factorizes the original Hamiltonian (up to an additive constant,

−E0), the related combination, ÂÂ†, can be seen to define an (in principle) entirely new

potential, since

ÂÂ† ≡ Ĥ(+) = − h̄2

2m

d2

dx2
+ V (+)(x) , (6)

where

V (+)(x) = V (−)(x)− h̄2

m

d

dx

[
ψ′0(x)

ψ0(x)

]
= −V (−)(x) +

h̄2

m

[
ψ′0(x)

ψ0(x)

]2
. (7)

If ψ
(−)
n (x) is any eigenfunction of Ĥ(−) with eigenvalue E

(−)
n , then Âψ

(−)
n (x) is an eigen-

function of Ĥ(+) with the same eigenvalue. This is easily seen since

Ĥ(+)
(
Âψ(−)

n

)
= ÂÂ†

(
Âψ(−)

n

)
= Â

(
Ĥ(−)ψ(−)

n

)
= E(−)

n

(
Âψ(−)

n

)
.

Similarly one can show that if ψ
(+)
n (x) is an eigenfunction of Ĥ(+) with eigenvalue E

(+)
n ,

then Â†ψ
(+)
n (x) is an eigenfunction of Ĥ(−) with the same eigenvalue. Taken together, these

relations can be shown to imply13

E(+)
n = E

(−)
n+1 , ψ(+)

n (x) =
1√
E

(−)
n+1

Â ψ
(−)
n+1(x) , and ψ

(−)
n+1(x) =

1√
E

(+)
n

Â† ψ(+)
n (x) . (8)

Thus, the two systems defined by V (±)(x) have the same energy spectrum, E
(±)
n , except that

the zero-energy ground-state of V (−)(x) has no counterpart in V (+)(x). We also note that

if the original ψ
(−)
n (x) are orthogonal and normalized, then so are the ψ

(+)
n (x), since using

Eq. (8) we have

〈ψ(+)
n |ψ(+)

m 〉 =
1√

E
(−)
n+1E

(−)
m+1

〈ψ(−)
n+1|Â† Â|ψ

(−)
m+1〉

=
1√

E
(−)
n+1E

(−)
m+1

〈ψ(−)
n+1|Ĥ(−)|ψ(−)

m+1〉

=

√√√√E
(−)
m+1

E
(−)
n+1

〈ψ(−)
n+1|ψ

(−)
m+1〉 = δn,m . (9)

4



As an example, we note that the simplest SUSYQM version of a familiar one-dimensional

system is the harmonic oscillator (HO), with potential energy and energy eigenvalues given

by

V HO(x) =
1

2
mω2x2 and En = (n+ 1/2)h̄ω , (10)

where n = 0, 1, 2.... The energy-eigenstate solutions are well-known to be

ψn(x) = CnHn(v) e−v
2/2 , (11)

where v ≡ x/β, β ≡
√
h̄/mω, the Hn(v) are the Hermite polynomials, and the Cn are

normalization constants given by Cn = 1/
√
β
√
π2nn!.

To apply the methods above, we first ‘zero out’ the potential and energy eigenvalues by

subtracting E0 = h̄ω/2 from both to obtain

V (−)(x) =
1

2
mω2x2 − h̄ω

2
and E(−)

n = nh̄ω . (12)

Then since ψ0(x) ∝ e−x
2/2β2

we find that the superpartner potential is

V (+)(x) = −V (−)(x) +
h̄2

m

(
− x

β2

)2

=

(
−1

2
mω2x2 +

h̄ω

2

)
+mω2x2 =

1

2
mω2x2 +

h̄ω

2
, (13)

with corresponding energies given by

E(+)
n = E

(−)
n+1 = (n+ 1)h̄ω = (n+ 1/2)h̄ω +

h̄ω

2
. (14)

We see that up to the common constant energy term, h̄ω/2, V (+)(x) and E
(+)
n are exactly

the same as for the original harmonic oscillator system, so that the supersymmetric partner

potentials are in fact identical. Using the results of Eq. (8) for the wave functions, we find

that

ψ(+)
n (x) =

1√
E

(−)
n+1

Â ψ
(−)
n+1(x) =

1√
n+ 1

(
β√
2

)(
d

dx
+

x

β2

)
ψ

(−)
n+1(x) , (15)

which is equivalent to the standard textbook lowering operator relation,

√
n+ 1 |n〉 = Â|n+ 1〉 where Â ≡ 1√

2mh̄ω
[ip̂+mωx] . (16)

III. SUPERSYMMETRIC VERSIONS OF THE INFINITE SQUARE WELL

In contrast to the harmonic oscillator, the supersymmetric partner of the infinite square

well (ISW), is non-trivially different, so we begin by examining the first ‘SUSY extension’
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of the ISW, which we label by S = 1. We define the ISW potential by

V ISW(x) ≡

∞ for x < 0 or x > a

0 for 0 < x < a
(17)

and label the energy eigenstates and eigenvalues as

ψISW
n (x) ≡ ψn(x) =

√
2

a
sin

[
(n+ 1)πx

a

]
and En =

h̄2π2

2ma2
(n+ 1)2 , (18)

where n = 0, 1, 2, ... so that the label n = 0 corresponds to the ground-state, to be consistent

with the notation in Sec. II. A parameter that will appear often in subsequent expressions

is the zero-point energy of the ISW, which we will define as E0 ≡ E0 = h̄2π2/2ma2. By

subtracting this zero-point energy from the potential and energy eigenvalues, we have

V (−)(x) = V ISW (x)− E0 and E(−)
n = E0

[
(n+ 1)2 − 1

]
. (19)

The ground-state wave function is ψ0(x) =
√

2/a sin(πx/a) which gives(
ψ′0(x)

ψ0(x)

)2

=
π2

a2
cos2(πx/a)

sin2(πx/a)
, (20)

so that using Eq. (7) and Eq. (20), the partner potential to V (−)(x) is

V (+)(x) = E0
2

sin2(πx/a)
− E0 , (21)

with corresponding energies given by

E(+)
n = E

(−)
n+1 = E0(n+ 2)2 − E0 . (22)

Just as in the harmonic oscillator case, since both V (−)(x) and E
(−)
n have the common factor

of −E0, we can rescale the zero of potential and quantized energies to find that the ‘first

supersymmetrization’ (or S = 1 version) of the ISW can be re-defined as

V (S=1)(x) =
2E0

sin2(πx/a)
=

1(1 + 1)E0
sin2(πx/a)

and E(S=1)
n = E0(n+ 2)2 . (23)

This result has appeared in numerous journal articles,6,13 monographs2,14 and even has made

its way into textbook problem sets.15,16 Completely independently of the SUSYQM connec-

tion to the ISW, discussions of similar potentials have appeared in collections of quantum

mechanics problems17 and ultimately can trace its origin back to the (trigonometric) Pöschl-

Teller potential18 and at least one group19 has explored the SUSY partners of that case.
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Using the results of Eq. (8) we find the wave functions of the S = 1 system to be

ψ(S=1)
n (x) =

1√
E

(−)
n+1

Â ψISW
n+1 (x)

=
a

π

1√
(n+ 2)2 − 1

(
d

dx
− π

a

cos(πx/a)

sin(πx/a)

)
ψISW
n+1 (x) (24)

=

√
2

a

1√
(n+ 2)2 − 1

{
(n+ 2) cos

[
(n+ 2)πx

a

]
− cos(πx/a)

sin(πx/a)
sin

[
(n+ 2)πx

a

]}
.

For comparison to results from the ISW (or S = 0) case and higher S solutions, we note

that for S = 1 the n = 0, 1 solutions are (up to an arbitrary sign factor) given by

ψ
(S=1)
0 (x) = 2

√
2

3a
sin2

(πx
a

)
and ψ

(S=1)
1 (x) =

4√
a

cos
(πx
a

)
sin2

(πx
a

)
. (25)

One can now repeat the supersymmetrization procedure by acting on the S = 1 solu-

tions (using ψ
(S=1)
0 (x) from Eq. (25) as the new ground-state wave function) to obtain the

supersymmetric partner potential (and their energy eigenvalues) corresponding to S = 2.

After again taking into account identical energy factors (common to both the potential and

energies), we find that

V (S=2)(x) = E0
6

sin2(πx/a)
= E0

2(2 + 1)

sin2(πx/a)
and E(S=2)

n = E0(n+ 3)2 , (26)

with the wave functions given by

ψ(S=2)
n (x) =

a

π

1√
(n+ 3)2 − 4

(
d

dx
− 2π

a

cos(πx/a)

sin(πx/a)

)
ψ

(S=1)
n+1 (x) . (27)

We see that this gives ψ
(S=2)
0 (x) ∝ sin3(πx/a) and ψ

(S=2)
1 (x) ∝ cos(πx/a) sin3(πx/a) which

can be compared to the results in Eq. (25).

One quickly recognizes the pattern, and by repeatedly applying the supersymmetriza-

tion procedures, one can show that the family of potentials generated in this hierarchy of

supersymmetric extensions of the infinite square well (hereafter SISW) is given by4,9

V (S)(x) = E0
S(S + 1)

sin2(πx/a)
and E(S)

n = E0(n+ S + 1)2 . (28)

We illustrate this hierarchy of potential energy functions, with the corresponding energy

spectra, in Fig. 1. We note that for quantized eneriges given by k2E0 there are k different

V (S)(x) potentials which will have that value as a possible state. All of the energy eigenvalues
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represented by dashed lines in Fig. 1 which are above the minimum value of a given V (S)(x)

(namely V
(S)
min = V (S)(x = a/2) = S(S + 1)E0) correspond to allowed states of that system.

The operator connection which generalizes the results from Eqns. (24) and (27) to connect

the S and S + 1 states is then

ψ(S+1)
n (x) =

(a
π

) 1√
(n+ S + 2)2 − (S + 1)2

[
d

dx
− (S + 1)π

a

cos(πx/a)

sin(πx/a)

]
ψ

(S)
n+1(x)

≡ B̂(S) ψ
(S)
n+1(x) , (29)

which defines the general operator B̂(S), which is analogous to the SUSYQM operator Â,

but made dimensionless.

This approach can then (in principle) be used to obtain the energy eigenstates of any

(n, S) combination by iteratively using Eq. (29) as often as necessary to generate the desired

state. For example, if one wants the (n = 5, S = 7) state, one can repeatedly act on the

(n = 12, S = 0) state (i.e., the n = 12 ISW wave function) using the appropriate B̂S

operators, or more generally

ψ(S)
n (x) =

p=S∏
p=1

B̂(p)
[
ψISW
n+S(x)

]
. (30)

One can, of course, implement this algorithm in symbolic manipulation programs to extract

any desired solution very efficiently.

Because the supersymmetrization procedure respects the normalization of the wave func-

tions, as shown in Eq. (9), we know that the ψ
(S)
n (x) solutions will be appropriately normal-

ized since the original ψ
(S=0)
n (x) = ψISW

n (x) were. Using results obtained from this approach,

we illustrate the lowest-lying quantum states (n = 0, 1, 2) for the first three values of S

(including the S = 0 or ISW case) in Fig. 2 which exhibit the expected nodal structure. For

larger S values, the probability density for low-n states is preferentially located the center

of the well, and away from the walls at x = 0, a, in contrast to the more ‘flat’ distribution

for the ISW. To visualize this limiting case, we plot some of the ψ
(S)
n (x) in Fig. 3, where for

fixed n = 5 we show |ψ(S)
n (x)|2 for two values of S (S = 0, 10). This more clearly illustrates

the peaking of the quantum probability density near the classical turning points, namely

where E
(S)
n = V (S)(x), in the non-trivial (non-ISW) S > 0 cases.

The result for the hierarchy of supersymmetric ISW (SISW) potentials in Eq. (28) was

evidently first noted by Sukarmar,9 and has also been discussed by others4,10 who, in ad-

dition, showed that the ground-state wave functions (in our notation) are proportional to
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ψ
(S)
0 (x) ∝ sin(S+1)(πx/a). The ground-state wave functions are automatically generated by

the repeated supersymmetrizations above and confirm this result, and we then easily find

the completely normalized results for ψ
(S)
0 (x). One can also easily see that the first-excited

states are proportional to cos(πx/a) sin(S+1)(πx/a) (again consistent with earlier results)

and obtain the corresponding normalizations for them as well. In this way we find the

universal result for the ground-state and first-excited state for the general S case is

ψ
(S)
0 (x) =

1√
a

[√
π Γ(S + 2)

Γ(S + 3/2)

]1/2
sinS+1(y) (31)

ψ
(S)
1 (x) =

1√
a

[
2
√
π Γ(S + 3)

Γ(S + 3/2)

]1/2
cos(y) sinS+1(y) , (32)

where we will henceforward write y ≡ πx/a for notational simplicity. These results can

be confirmed by direct substitution into the Schrödinger equation for V (S)(x) and E
(S)
n

from Eq. (28), providing an example of the pedagogical use of many aspects of this rich

problem. It is also easy to show that the ψ
(S+1)
0 (x) and ψ

(S)
1 (x) satisfy the operator relation

ψ
(S+1)
0 (x) = B̂(S) ψ

(S)
1 (x) in Eq. (29) for general S.

We note that for x ≈ 0 (i.e. near the infinite wall), the potential for the general S case

reduces to

V(S)(x) ∼ S(S + 1)h̄2

2mx2
, (33)

which is clearly similar in form to the standard ‘centrifugal barrier’ term arising from angular

momentum considerations in 3D problems involving central potentials, namely VC(r) =

l(l + 1)h̄2/2mr2, here with the parameter S playing the role of the angular momentum

quantum number l: a similar barrier term also arises near the other infinite wall at x = a.

To understand this behavior, we observe that for such an initial potential the wave func-

tion near a wall (say at x = 0) must have the form ψ
(S=0)
0 (x) = a1x + O(x2) so that the

S = 1 potential will necessarily contain a term of the form

V (S=1)(x∼0) =
h̄2

m

(
ψ′0(x)

ψ0(x)

)2

∼ h̄2

m

(
a1
a1x

)2

∝ 2h̄2

2mx2
, (34)

giving an S(S + 1) = 1(1 + 1) = 2 ‘centrifugal barrier’ term in the first supersymmetric

potential near x = 0. The S = 1 wave functions must then satisfy the appropriate bound-

ary conditions at x ∼ 0 (just as would 3D radial wave functions in central potentials),

namely ψ
(S=1)
0 (x) = a2x

2 +O(x3) and using this dependence when one performs the second
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supersymmetrization, one finds

V (S=2)(x) =
6h̄2

2mx2
, (35)

consistent with S(S+1) = 2(2+1) = 6. Once again, one can proceed by induction to derive

the form in Eq. (33) and the fact that ψ
(S)
n (x∼0) ∝ xS+1. This behavior is clearly illustrated

in Fig. 2 (lower-right frame) where ψ
(S)
0 (x) approaches the boundaries at x = 0 increasingly

smoothly as S increases, as the wave function ‘tunnels’ into the ‘angular-momentum-like’

barriers near the walls.

IV. SISW WAVE FUNCTIONS

To explore the structure of the solutions in the combined (n, S) space, we first use the

iterative procedures outlined above to collect the 5 lowest lying S = 1 solutions. Motivated

by the forms in Eq. (25), we use symbolic manipulation software to expand and factor the

resulting trigonometric functions in specific ways to obtain the following

ψ
(S=1)
0 (x) = 2

√
2

3a
sin2(y) (36)

ψ
(S=1)
1 (x) =

4√
a

[cos(y)] sin2(y) (37)

ψ
(S=1)
2 (x) = 4

√
2

15a

[
−1 + 6 cos2(y)

]
sin2(y) (38)

ψ
(S=1)
3 (x) =

4√
3a

[
−3 cos(y) + 8 cos3(y)

]
sin2(y) (39)

ψ
(S=1)
4 (x) = 2

√
2

35a

[
3− 48 cos2(y) + 80 cos4(y)

]
sin2(y) , (40)

where we again use the notation y ≡ πx/a. We have done this for higher values of S and

find quite generally that all of the solutions for a given value of S have a common factor

of sin(S+1)(y) and that the remaining part of the wave function is a polynomial in cos(y) of

order n. This uniform pattern for the S ≥ 1 states seems, at first, to be rather different than

the standard ISW results in Eq. (18) which corresponds to S = 0, at least until we realize

that repeated use of trigonometric identities can be applied to the ψISW
n (x) = ψ

(S=0)
n (x) to
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obtain the expressions

ψ
(S=0)
0 (x) =

√
2

a
sin(y) (41)

ψ
(S=0)
1 (x) = 2

√
2

a
[cos(y)] sin(y) (42)

ψ
(S=0)
2 (x) =

√
2

a

[
−1 + 4 cos2(y)

]
sin(y) (43)

ψ
(S=0)
3 (x) = 2

√
2

a

[
−2 cos(y) + 4 cos3(y)

]
sin(y) (44)

ψ
(S=0)
4 (x) =

√
2

a

[
1− 12 cos2(y) + 16 cos4(y)

]
sin(y) , (45)

which are indeed of the same general form.

Building on the similarity between these results and the HO case, we argue that the

sin(S+1)(y) terms here play a role akin to the e−x
2/2β2

factors in the HO case, being responsible

for ‘enforcing the boundary conditions.’ In the SISW case, the sin(S+1)(y) components

enforce the boundary conditions at the x = 0, a infinite walls, while for the oscillator solutions

the Gaussian factors guarantee the smooth vanishing of the wave function at x = ±∞.

Motivated by this similarity, we attempt to factor out the sin(S+1)(y) dependence by

writing

ψ(S)
n (x) = G(S)

n (y) sinS+1(y) , (46)

and substituting it into the (dimensionless) Schrödinger equation for V (S)(x), namely

d2ψ
(S)
n (y)

dy2
− S(S + 1)

sin2(y)
ψ(S)
n (y) + (n+ S + 1)2ψ(S)

n (y) = 0 , (47)

thereby obtaining a differential equation for the Gn(y) components given by

sin(y)
d2G

(S)
n (y)

dy2
+ 2(S + 1) cos(y)

dG
(S)
n (y)

dy
+
[
(n+ S + 1)2 − (S + 1)2

]
sin(y)G(S)

n (y) = 0 .

(48)

Using our experience with the form of the solutions for general (n, S), from Eqs. (36) -

(40) and (41) - (45) and beyond, we assume that G
(S)
n (y) can be expanded in a (presumably

finite) series in powers of cos(y), by writing

G(S)
n [cos(y)] =

∞∑
k=0

ak,n cosk(y) . (49)
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Substituting this into Eq. (48) we find∑
k

k(k − 1)ak,n cosk−2(y) =
∑
k

ak,n[(k + S + 1)2 − (n+ S + 1)2] cosk(y) , (50)

and upon relabeling and comparing similar powers of cos(y) we find the recursion relation

amongst the expansion coefficients

ak+2,n = ak,n

[
(k + S + 1)2 − (n+ S + 1)2

(k + 1)(k + 2)

]
. (51)

This expression confirms that for a given n, the series in cos(y) will indeed terminate with a

highest power of k = n. It also connects every other term in the expansion, implying that

starting with arbitrary a0,n, a1,n, separate even and odd series will be generated.

This is the identical logic used to conclude that the series expansion for the harmonic

oscillator (HO) problem must reduce to a finite polynomial, since otherwise the infinite

series would yield the incorrect behavior as x→ ±∞. In HO case, the recursion relation of

the coefficients one obtains also connects every other term in the expansion, also giving the

expected even and odd parity solutions.

The generality of the results obtained so far, namely that the solutions can be constructed

from simple factors which encode the behavior of the solutions at the boundaries, along with

polynomials (here in the variable cos(y)) which describe the dynamical behavior inside the

well (the ‘wiggliness’ if you will) suggested to us that these expressions might be able to be

mapped onto existing forms in the mathematical literature. Given that the equation for the

polynomials yields solutions involving the variable w = cos(y), we rewrite the differential

equation for G
(S)
n (y) = Fn(w) and obtain

sin2(y)F ′′n (w)− cos(y)F ′n(w)(2S + 3) + n(n+ 2S + 2)Fn(w) = 0 (52)

or

(1− w2)F ′′n (w)− wF ′n(w)(2S + 3) + n(n+ 2S + 2)Fn(w) = 0 . (53)

This final form is indeed known in the mathematical physics literature20 as being the equation

for the Gegenbauer polynomials, sometimes written in the form

(1− z2)F ′′(z)− zF ′(z)(2α + 1) + n(n+ 2α)F (z) = 0 , (54)

with solutions expressed in the notation F (z) = Cα
n (z), where we associate α = S + 1.

12



The Gegenbauer functions are polynomials of order n, defined over the interval z ∈

(−1,+1), and mutually orthogonal under the weight (1 − z2)α−2. They have n nodes over

the allowed range and as x varies from 0 to a in our physical problem, the argument of

Cα
n [cos(πx/a)] varies in the defined range of (−1,+1). The appearance of such orthogonal

polynomials should be very familiar from the 1D harmonic oscillator, where the Hermite

polynomials, Hn(z), appear with the weight being e−z
2

defined over the interval (−∞,+∞),

and very similar results from the 3D Coulomb problem.

Integrals over the products of the Cα
n (z) times the appropriate weight functions20 are

exactly the type of results needed to determine the normalization of the solutions. Specifi-

cally, we find using such results that we can write the general (n, S) solution for the SISW

hierarchy of potentials in the form

ψ(S)
n (x) =

1√
a

[
22S+1Γ(n+ 1)Γ2(S + 1)(n+ S + 1)

Γ(n+ 2S + 2)

]1/2
C(S+1)
n [cos(y)] sinS+1(y) , (55)

where again y ≡ πx/a. Using the standard results for the lowest lying Gegenbauer polynomi-

als, namely Cα
0 (y) = 1 and Cα

1 (y) = 2αy, we can also reproduce our earlier ‘experimentally

derived’ results for n = 0, 1 for all S, including the normalization factors, in Eqs. (31) and

(32). In addition, for S = 0, the results of Eq. (55) reduce to a new form of the ISW wave

functions

ψ(S=0)
n (x) = ψISW

n (x) =

√
2

a
Un−1[cos(y)] sin(y) , (56)

where Un are the Chebyshev polynomials of the second kind. We also note here that the

approach leading up to Eq. (51) can also be used for this new version for the ISW. We

can also solve the time-independent Schrödinger equation by asserting that solutions of the

differential equation are in the form polynomial in cos(y):

ψn(x) = Gn[cos(y)] sin(y) , (57)

where

G(S=0)
n [cos(y)] =

n∑
k=0

ak,n cosk(y) . (58)

Upon inserting this trial wave function into the time-independent Schrödinger equation, we

obtain a differential equation for G
(S)
n (y) given by

sin(y)
d2G

(S)
n (y)

dy2
+ 2 cos(y)

dG
(S)
n (y)

dy
+
[
(n+ 1)2 − 1

]
sin(y)G(S)

n (y) = 0 . (59)
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Similar to Eq. (48), we take S = 0 to represent the ISW. We then substitute Eq. (58)

into Eq. (59) to find that

∑
k

k(k − 1)ak,n cosk−2(y) =
∑
k

ak,n[(k + 1)2 − (n)2] cosk(y) (60)

Simplifying this expression allows us to obtain a recursive relationship for the constant

coefficient in Eq. (60)

ak+2,n =
(k + 1)2 − n2

(k + 2)(k + 1)
ak,n , (61)

where separate even and odd series will be generated. If a0,1 = 1 and a0,2 = 2, Eq. (61)

generates the Chebyshev polynomials of the second kind in Eq. (58), as expected. We also

note that when S = 0, Eq. (51) reduces to Eq. (61).

The expression in Eq. (55) is one we have not found in the physics or mathematics

literature and which we believe to be a new result. Given the simplicity of its form, we

suggest that this system may find a useful place in the mathematical physics literature

of quantum mechanics, especially given the array of additional questions (see Sec. V for

examples) one can then pursue in analyzing its structure.

While we were introduced to the problem leading to this final result using the methods

of SUSYQM outlined in Sec. II, we found the standard methods of analysis used in many

quantum mechanics textbooks (extracting the behavior at the boundary conditions, series

expansion of the ‘remainder’ problem, etc.) absolutely necessary to make the connection to

well-known special functions to arrive at the final compact and closed-form general solution

for all (n, S) in Eq. (55) which is the main result of this work. Instructors and students

alike can certainly appreciate seeing decades-old textbook methodologies applied to a new

class of quantum mechanical problems in a very pedagogical manner. We wish to emphasize

again the utility of applying powerful symbolic manipulation techniques to new theory prob-

lems, somewhat in the same way that experimentalists would apply statistical/visualization

techniques to data to look for patterns.
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V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have focused on obtaining the solutions to a novel set of quantum me-

chanical problems encoded in the hierarchy of supersymmetric extensions of the most famil-

iar of all textbook models, the infinite square well. Using the methods of supersymmetric

quantum mechanics, and the mathematical tools outlined in almost every undergraduate

quantum textbook, we have been able to present elegant, compact, closed-form solutions to

a new class of quantum-mechanical potentials, dramatically extending earlier discussions4,9,10

of this system. While deriving these (seemingly novel) results, we have emphasized the in-

terplay between various solutions methods in quantum mechanics when approaching new

problems, in the same way that any student might when facing ‘familiar’ problems for the

first time, so in that sense our work is very pedagogical.

This model system is now ripe for further study, with many additional areas of research

to explore or pedagogical application to use in the classroom. For example, with the ability

to now easily calculate many physical quantities of interest, we have been able to find closed

form expressions for the expectation values of the potential and kinetic energies in a general

(n, S) state, namely

〈ψ(S)
n |V (S)(x)|ψ(S)

n 〉 = E0
{

2S(S + 1)(n+ S + 1)

(2S + 1)

}
(62)

1

2m
〈ψ(S)

n |p̂2|ψ(S)
n 〉 = 〈ψ(S)

n |T̂ |ψ(S)
n 〉 = E0

{
[(2S + 1)n+ (S + 1)](n+ S + 1)

(2S + 1)

}
, (63)

where we find that

〈ψ(S)
n |V (S)(x)|ψ(S)

n 〉+ 〈ψ(S)
n |T̂ |ψ(S)

n 〉 = E0(n+ S + 1)2 = E(S)
n . (64)

We have also confirmed (by explicit calculation) that the virial theorem holds, namely that

〈ψ(S)
n |T̂ |ψ(S)

n 〉 =
1

2
〈ψ(S)

n

∣∣∣∣xdV (S)(x)

dx

∣∣∣∣ψ(S)
n 〉 , (65)

for S ≥ 1 where the potential energy function, V (S)(x), is better behaved than V (S=0)(x) =

V ISW(x). Problems such as these (and many more which suggest themselves) can be used as

new classroom examples or homework assignments (not appearing in standard textbooks)

and therefore can certainly be incorporated into an advanced undergraduate class, especially

one where computer math tools are encouraged as an educational tool.
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The simple form of the ψ
(S)
n (x) in terms of known special functions suggests that the

momentum-space wave functions might also be written in equally compact and elegant

ways. For example, for the 3D Coulomb problem (hydrogen atom) the momentum-space

solutions were deftly derived in the very early days of quantum mechanics21 in terms of

known special functions, in fact Gegenbauer polynomials! We have already started to explore

the general φ
(S)
n (p) solutions and have confirmed that they exhibit large |p| behavior given

by |φ(S)
n (p)| ∼ p−(2+S), consistent with theorems22 connecting the discontinuities of ψ(x)

(here encoded in the increasingly smooth xS+1 behavior of the wave functions at the walls)

very directly to the large momentum limit of φ(p). There are likely many closed-form

results waiting to be uncovered in the continued mathematical physics analysis of both the

position-space and momentum-space versions of this problem.

One of the most striking results of the SISW hierarchy is the simple form of the general

V (S)(x) potentials, and especially their explicit dependence on the S(S + 1) factor. While

we expect the general form in Eq. (33) near any infinite wall in a SUSY hierarchy, the fact

that the S(S + 1) factor appears as a pre-factor to a relatively simple functional form is

perhaps surprising. We note that two earlier works have already explored the behavior of

‘half-potential’ problems, ones defined by

Ṽ (x) ≡

∞ for x < 0

V (x) for 0 < x
, (66)

for cases where V (x) has a very high degree of symmetry in the complete 1D case, namely

for the ‘half-oscillator’23 and the 1D Coulomb problem.24 The authors of those studies have

considered (in passing) the S = 1 supersymmetric extensions of the S = 0 original potentials

for each case and have found

V (S=0)(x) =
1

2
mω2x2 =⇒ V (S=1)(x) =

1

2
mω2x2 +

2h̄2

2mx2
, (67)

V (S=0)(x) = −Ke
2

x
=⇒ V (S=1)(x) = −Ke

2

x
+

2h̄2

2mx2
, (68)

where the S = 1 results have not just an approximate S(S + 1)h̄2/2mx2 behavior near the

infinite wall boundary (as suggested by Eq. (33)), but an exact ‘centrifugal’ term for all

x > 0. We have extended those results and find that repeated symmetrizations of these two
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systems give

V (S=0)(x) =
1

2
mω2x2 =⇒ V (S)(x) =

1

2
mω2x2 +

S(S + 1)h̄2

2mx2
, (69)

V (S=0)(x) = −Ke
2

x
=⇒ V (S)(x) = −Ke

2

x
+
S(S + 1)h̄2

2mx2
(70)

for the general S case. We have also found closed-form expressions for the general solutions of

these systems, using results from the related fully three-dimensional versions of the harmonic

oscillator and Coulomb problem, where similar potentials occur in the corresponding radial

equation. In these cases, the role of the S parameter is indeed closely related to the angular

momentum quantum number (l) of the 3D problem.
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18 Pöschl G and Teller E 1933 Bemerkungen zur Quantenmechanik des anharmonischen Oszilla-

tors,” Z. Phys. 83 143-151

19 Contreras-Astorga A and Fernández C D J 2008 Supersymmetric partners of the trigonometric

Poschl-Teller potentials J. Phys. A: Math. Theor. 41 475303 (18 pp)

20 Abramowitz M and Stegun I (Editors) 1972 Handbook of Mathematical Functions (with For-

mulas, Graphs, and Mathematical Tables) (10th Edition) (Washington DC: National Bureau of

Standards)

21 Podolosky B and Pauling L 1929 The momentum distribution in hydrogen-like atoms Phys.

Rev. 34 109-116

22 Belloni B and Robinett R W 2011 Less than perfect quantum wavefunctions in momentum-

18



space: How φ(p) senses disturbances in the force Am. J. Phys. 79 94-102

23 Ayorinde O A, Chisholm K, Belloni M and Robinett R W 2010 New identities from quantum-

mechanical sum rules of parity-related potentials J. Phys. A: Math. Theor. 43 235202 (22pp)
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V
HSLHxL versus x

FIG. 1: Superpartner potentials, V (S)(x) versus x, for S = 0 (infinite square well or ISW with

infinite walls at x = 0, a) and S = 1, 2, 3, 4 (solid curves), along with low-lying energy levels. The

ground-state energy of the ISW, E
(S=0)
0 = E0, is shown as the bottom horizontal dashed line and

the ISW is the only state for which that is a solution. Higher energy levels, such as the one labeled

E
(S=0)
2 = E

(S=1)
1 = E

(S=2)
0 = 9E0, appear as solutions for more than one value of S.
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FIG. 2: Position-space solutions, ψ
(S)
n (x) versus x, for n = 0, 1, 2 (solid, dashed, dotted curves) for

S = 0 or ISW case (upper left), S = 1 (upper right), S = 2 (lower left). In the lower right we show

the ground-state solutions, ψ
(S)
0 (x), for S = 0, 1, 2 (solid, dashed, dotted curves) to illustrate the

xS+1 behavior near the infinite walls, as described near the end of Sec. III.

21



x

ÈΨ5

HSL
HxL 2

FIG. 3: Probability density, |ψ(S)
n (x)|2 versus x, for n = 5, for S = 0, 10 (solid, dashed curves).

For the S = 0 or ISW case, the probability density approaches the classical ’flat’ limit (after local

averaging) for large n, while for S > 0, the peaking of the probability density near the classical

turning points of V (S)(x) is clear. For example, the bold vertical dotted lines indicate the classical

turning points for the (n, S) = (5, 10) case.
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