
Quantum mechanical sum rules for two model systems
M. Belloni and R. W. Robinett 
 
Citation: American Journal of Physics 76, 798 (2008); doi: 10.1119/1.2908194 
View online: http://dx.doi.org/10.1119/1.2908194 
View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/76/9?ver=pdfcov 
Published by the American Association of Physics Teachers 
 
Articles you may be interested in 
Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose
reductase 
J. Chem. Phys. 143, 184111 (2015); 10.1063/1.4935176 
 
High-velocity estimates and inverse scattering for quantum N-body systems with Stark effect 
J. Math. Phys. 53, 102105 (2012); 10.1063/1.4757590 
 
Leutwyler‐Smilga sum rules in the Schwinger model 
AIP Conf. Proc. 892, 217 (2007); 10.1063/1.2714376 
 
Pentaquarks in QCD Sum Rule Approach 
AIP Conf. Proc. 739, 550 (2004); 10.1063/1.1843651 
 
The Thomas–Reiche–Kuhn sum rule and the rigid rotator 
Am. J. Phys. 65, 335 (1997); 10.1119/1.18542 
 
 

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.118.49.21 On: Fri, 03 Jun 2016 14:38:29

http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=M.+Belloni&option1=author
http://scitation.aip.org/search?value1=R.+W.+Robinett&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.2908194
http://scitation.aip.org/content/aapt/journal/ajp/76/9?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/143/18/10.1063/1.4935176?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/143/18/10.1063/1.4935176?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/53/10/10.1063/1.4757590?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2714376?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1843651?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/65/4/10.1119/1.18542?ver=pdfcov
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Sum rules have played an important role in the development of many branches of physics since the
earliest days of quantum mechanics. We present examples of one-dimensional quantum mechanical
sum rules and apply them to the infinite well and the single �-function potential. These examples
illustrate the different ways in which these sum rules can be realized and the varying techniques by
which they can be confirmed. We use the same methods to evaluate the second-order energy shifts
arising from the introduction of a constant external field, namely the Stark effect. © 2008 American
Association of Physics Teachers.
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I. INTRODUCTION

Quantum mechanical identities that relate time-dependent
expectation values, influential in the early days of quantum
theory, continue to be useful pedagogical tools. For example,
the results often known as Ehrenfest’s theorem�s�,1

�p̂�t = m
d�x�t

dt
and m

d2�x�t

dt2 = − � dV�x�
dx

�
t
, �1�

can be used to show that time-dependent quantum expecta-
tion values are related to their corresponding classical equa-
tions of motion.2 Identities restricted to time-independent ex-
pectation values evaluated using energy eigenstates, 	n�, such
as the quantum virial theorem

�n	T̂	n� = �n
 p̂2

2m

n� =

1

2
�n
x

dV�x�
dx


n� , �2�

and related hypervirial theorems,3 are historically and peda-
gogically valuable because they too have clear classical ana-
logs and can often be evaluated without resorting to direct
integration.

Similar relations involving off-diagonal matrix elements,
especially sum rules, were also used to dramatic effect in the
early days of quantum theory. For example, the Thomas-
Reiche-Kuhn energy-weighted sum rule,4

�
k

�Ek − En�	�n	x	k�	2 =
�2

2m
, �3�

was used to describe the physics of electric-dipole interac-
tions with atoms. It was originally obtained by requiring that
the Kramers-Heisenberg dispersion relation reduce to the
Thomas scattering formula at high energies. The form

�
k

2m�Ek − En�
�2 	�n	x	k�	2 = �

k

fn,k = 1, �4�

was an important experimental check of the oscillator
strengths fn,k and a confirmation of the predictions of early
quantum theory. Kramer was able to derive this relation in
the context of matrix mechanics and reproduced the matrix
version of the famous commutation relation �x , p�= i�.5

Other early uses of sum rules included Bethe’s study of en-
ergy loss mechanisms for charged particles in matter,6 which
made use of the relation

�
k

�Ek − En�	�n	eiqx	k�	2 =
�2q2

2m
, �5�

eventually leading to the Bethe-Bloch formula.
Since then, sum rules have been used in many areas of

physics, including atomic,7 molecular,8 solid state,9–12

nuclear,13–16 and especially particle physics.17–21 One well-
known paper which applied sum rule methods to QCD �Ref.
22� is the tenth most highly cited paper in the particle phys-
ics literature and over 2000 papers on QCD sum rules have
been published, with 60 appearing in 2007 alone.23

The power of such sum rule identities is that they encode
a large amount of information about the energy spectrum and
energy eigenfunctions of the system in a compact form, often
in a way that is amenable to experimental confirmation.
These constraints can in turn probe assumptions about the
fundamental interactions which were assumed or the meth-
ods used to approximate physical systems. For example,
QCD sum rules have been used to extract values of both the
light and heavy quark masses, which are not otherwise di-
rectly measurable quantities.20

Despite their historical and contemporary importance, sum
rules are not often treated in standard quantum mechanics
courses. The Thomas-Reiche-Kuhn sum rule is sometimes
included in undergraduate quantum mechanics books,24 but
often only as a problem, and typically only using the har-
monic oscillator. This lack of coverage might be due to the
paucity of tractable examples in familiar model systems to
which students typically are exposed, or the level of math-
ematical analysis required to verify even the simplest cases.

The purpose of this paper is to provide a suite of one-
dimensional sum rules and to demonstrate the techniques
required for their confirmation in two model quantum me-
chanical systems, the infinite well and the single �attractive�
�-function potential. In each case, the sum rules are satisfied
in different ways and rely on different evaluation methods
�summation techniques and contour integration methods�, il-
lustrating the diverse ways in which such sum rules are re-
alized. The level of mathematical detail required is easily
accessible to advanced undergraduate students.

Confirming that these sum rues are satisfied is not an
empty exercise because it is possible to obtain surprising
results, even for simple systems such as the rigid rotator.25 In
addition, energy-weighted sum rule calculations are actually
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not exotic, because perturbation theory is discussed in stan-
dard quantum mechanics textbooks. The second-order shift

in the energy due to a perturbation Ṽ�x� is given by

En
�2� = �

k�n

	�n	Ṽ�x�	k�	2

�En
�0� − Ek

�0��
, �6�

which is the form of an energy-weighted sum rule. By using
this connection, we will find that we can use the same tech-
niques for confirming sum rules to evaluate the shift due to

the addition of a constant external field, Ṽ�x�=Fx, namely
the Stark shift, in the model systems we consider.

The introduction of sum rules can help students appreciate
their use in research applications. It can also help place the
methods used in the same context as the more familiar
second-order perturbation theory calculations, and show how
the related sums over intermediate states can sometimes be
done in closed form.

II. SUM RULE EXAMPLES

The derivation of many energy weighted sum rules has
been succinctly described as making use of a “…well-known
technique which involves closure and evaluating a double
commutator in two different ways.”11 Such calculations rely
on the fact that the solutions of the system form a complete
set of states. For example, consider a system with energy

eigenstates satisfying Ĥ	n�=En	n�. For an arbitrary operator,

Ô, we have the sum over off-diagonal matrix elements,

�
all k

	�n	Ô	k�	2 = �
all k

�n	Ô	k��k	Ô	n�

= �n	Ô��
all k

	k��k	Ô	n� = �n	Ô2	n� . �7�

The sum over the complete set of intermediate states, 	k�,
may include both an infinite sum �for discrete levels�, an
integral �for continuum states�, or both.

For the special case of Ô=x, we obtain the simplest dipole
matrix element sum rule given in Bethe and Jackiw,26,27

namely

�
k

	�n	x	k�	2 = �n	x2	n� �x-closure sum rule� , �8�

with an identical sum rule for the off-diagonal matrix ele-
ments of the momentum operator.

To derive the Thomas-Reiche-Kuhn sum rule, we start
with the commutation relations,

�p̂,x� =
�

i
�9a�

and �Ĥ,x� =
1

2m
�p̂2,x� =

�

mi
p̂ , �9b�

where we assumed a standard Hamiltonian of the form

Ĥ =
p̂2

2m
+ V�x� . �10�

Equation �9a� can be written in the form

�

i
= �n	p̂x − xp̂	n� = �

all k
��n	p̂	k��k	x	n� − �n	x	k��k	p̂	n�� ,

�11�

where we have inserted a complete set of states. Equation
�9b� can be written as

�n	p̂	k� =
im

�
�n	�Ĥ,x�	k� =

im�En − Ek�
�

�n	x	k� , �12�

with a similar expression for �k	p̂	n�. When used in Eq. �11�,
Eq. �12� gives the desired result,

�2

2m
= �

k

�Ek − En�	�n	x	k�	2. �13�

Wang28 has derived a very general expression for the
energy-difference weighted sum rules for the matrix ele-
ments of a well-behaved function of x, F�x�, namely

�
k

�Ek − En�	�n	F�x�	k�	2 =
�2

2m
�n
dF�x�

dx

dF†�x�
dx


n� ,

�14�

which simplifies if the function is Hermitian so that F�x�
=F†�x�. This general result can be used to reproduce the
Thomas-Reiche-Kuhn sum rule by using F�x�=x. We can

also derive the Bethe sum rule6 by using Ô=eiqx, in which
case we find

�
k

�Ek − En�	�n	eiqx	k�	2 =
�2q2

2m
. �15�

If we use F�x�=x2, we obtain the monopole sum rule, which
has been used in applications to nuclear collective
excitations,14

�
k

�Ek − En�	�n	x2	k�	2 =
2�2

m
�n	x2	n� . �16�

Wang28 also discussed sum rules involving functions of the
momentum operator, and mixed x , p̂ relations.

Bethe and Jackiw26,27 have derived several other sum rules
for dipole moment matrix elements by using multiple com-
mutation relations with the Hamiltonian, thus generalizing
Eq. �9�, and yielding higher powers of the energy difference,

�
k

�Ek − En�2	�n	x	k�	2 =
�2

m2 �n	p̂2	n�

=
2�2

m
�En − �n	V�x�	n�� , �17a�

�
k

�Ek − En�3	�n	x	k�	2 =
�4

2m2�n
d2V�x�
dx2 
n� , �17b�

and

�
k

�Ek − En�4	�n	x	k�	2 =
�4

m2�n
�dV�x�
dx

�2
n� , �17c�

where Eqs. �17b� and �17c� are the “force times momentum”
and “force squared” sum rules, respectively.
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Note that not all of these sum rules are guaranteed to
converge,26 and in our examples, because of the singular
nature of the potentials �the infinite well and the single-��,
several of these sum rules will not be applicable.

III. THE INFINITE SQUARE WELL

The infinite square well is the most popular textbook ex-
ample of a bound state system and is frequently used to
introduce students to tractable examples of recent research,
such as wave packet revivals.29 We can confirm many of the
sum rules discussed in Sec. II for this case by making use of
relatively straightforward techniques to evaluate the infinite
sums that appear. �The only example we can find in the lit-
erature of the evaluation of sum rules in the context of the
infinite well is a short discussion in an appendix of Ref. 14.�

We consider the standard infinite square well defined by

V�x� = �0 �0 � x � a�
� �x � 0 and x � a�  . �18�

The energy eigenstates and corresponding eigenvalues are
�n�x�=�2 /a sin�n�x /a� and En=�2n2�2 /2ma2, where n
=1,2 , . . .. The expectation value of x2 required for the clo-
sure sum rule in Eq. �8� is easily calculated to be

�n	x2	n� = a2�1

3
−

1

2n2�2� . �19�

The energy differences needed for the various sum rule cal-
culations are given by

Ek − En =
�2�2

2ma2 �k2 − n2� , �20�

and the off-diagonal matrix elements are given by

�n	x	k� =
2

a
�

0

a

sin�n�x

a
� � sin� k�x

a
�dx �21a�

=�0 k + n even

− �8na/�2��k/�k2 − n2�2� k + n odd,
 �21b�

so that for n even �odd� only odd �even� values of k will
contribute. This result is due to the energy eigenfunctions’
parity relative to the center of the well at x=a /2. For the
closure identity in Eq. �8�, we need to include the diagonal
matrix element,

�n	x	n� =
a

2
. �22�

This term does not contribute to the other sum rules, because
the k=n term is suppressed by the �Ek−En� energy difference
factor. In contrast to potential energy functions that are sym-
metric about the origin, such as the harmonic oscillator po-
tential and the single �-function potential, the standard infi-
nite square well potential as defined in Eq. �18� is not
symmetric, and we must consider the k=n case for the clo-
sure identity.

The position closure sum rule in Eq. �8� reads

�
all k

	�n	x	k�	2 = �a

2
�2

+ �8na

�2 �2

�
k

k2

�k2 − n2�4 , �23�

where the sum is over even �odd� values of k if n is odd
�even�. Equation �23� is the first of many examples that we
will encounter where we require infinite sums of the form

Sp
�	��z� = �

k

1

�k2 − z2�p , �24�

where z takes on integer values and the sum is over odd, S�−�,
or even, S�+�, values of k. For example, the sum in Eq. �23�
can be written in the form

�
k

k2

�k2 − n2�4 = �
k

�k2 − n2 + n2�
�k2 − n2�4 = S3

�	��n� + n2S4
�	��n� .

�25�

We evaluate all of the sums required in this section using
standard series expansions in Appendix A. However, current
computer algebra systems such as MATHEMATICA can easily
handle such sums. Students may be allowed on the first pass
to use such tools and then asked to delve more deeply into
the methods used to obtain the general mathematical results
for this class of problems.

For example, in modified MATHEMATICA syntax, the sum
over even integers k �relevant for n odd�, yields

Sum�kˆ2 / �kˆ2−zˆ2�ˆ4, �k,2 , Infinity,2��
=�−12 Pi Cot�Pi z /2�−6 Piˆ2 z Csc�Pi z /2�ˆ2�
+2 Piˆ4 zˆ3 Cot�Pi z /2�ˆ2 Csc�Pi z /2�ˆ2
+Piˆ4 zˆ3 �Csc�Pi z /2�ˆ4� /768zˆ5

so that for odd integer values of z=n, we have �by hand or by

using Assuming− �z� Integers in MATHEMATICA�

�
k even

k2

�k2 − n2�4 =
�4n3 − 6�2n

768n5 =
�4

768n2 −
�2

128n4 . �26�

We obtain the same function of n for the sum over odd val-
ues of k �relevant for even n�. A trivial modification of the
MATHEMATICA code is all that is required. If we use this
result in Eq. �23�, we find that

�
all k

	�n	x	k�	2 = 	�n	x	n�	2 + �
k�n

	�n	x	k�	2 �27a�

=
a2

4
+

64a2n2

�4 � �4

768n2 −
�2

128n4� �27b�

=a2�1

3
−

1

2n2�2� = �n	x2	n� , �27c�

as expected.
The Thomas-Reiche-Kuhn sum rule is then given by

�
k

�Ek − En�	�n	x	k�	2 = � �2

2m
��64n2

�2 ��
k

k2

�k2 − n2�3 ,

�28�

where the sum over k is only for even �odd� values for n odd
�even�. These sums can also be done in closed form, and we
find
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In
�+��z� � �

k even

k2

�k2 − z2�3 = S2
�+��z� + z2S3

�+��z� �29a�

=
1

64z3��2z csc2��z

2
� + 2� cot��z

2
�

− �3z2 cot��z

2
�cos2��z

2
�� , �29b�

In
�−��z� � �

k odd

k2

�k2 − z2�3 = S2
�−��z� + z2S3

�−��z� �29c�

=
1

64z3��2z sec2��z

2
� − 2� tan��z

2
�

+ �3z2 tan��z

2
�sec2��z

2
�� . �29d�

Note the similarities in form. If we substitute the appropriate
odd and even values of n in each case, we find that

In
�+��n� = In

�−��n� =
�2

64n2 , �30�

for all integer values of n. This result, when substituted into
Eq. �28�, directly confirms the Thomas-Reiche-Kuhn sum
rule.

The verification of the monopole sum rule in Eq. �16�
requires a small, but important, modification of the summa-
tion methods. The off-diagonal matrix elements required for
k�n are

�n	x2	k� =
�− 1�k−n8a2n

�2 � k

�k2 − n2�2� . �31�

For k=n we use the result in Eq. �19�. Because the k=n term
does not contribute to the sum �because of the associated
energy difference factor�, the left-hand side of Eq. �16� re-
duces to

�
k

�Ek − En�	�n	x2	k�	2 = � �2�2

2ma2�
��64n2a4

�4 ��
k�n

k2

�k2 − n2�3 , �32�

and we must sum over all values of k�n because the even/
odd pattern in the dipole matrix elements is not present in
this case.

To evaluate this sum we first generalize the sum to nonin-
teger values of n �see Appendix A� and rewrite the sum as

T�z;n� � �
k�n

k2

�k2 − z2�3 = ��
all k

k2

�k2 − z2�3� −
n2

�n2 − z2�3 .

�33�

The second term corresponds to the “missing” term in the
k�n sum. The first sum can be evaluated for arbitrary z,
giving

T�z;n�

= �� cot��z� + �2z csc2��z� − 2�3z2 cot��z�csc2��z�
16z3 �

−
n2

�n2 − z2�3 . �34�

Because we will take the limit z→n, we write z=n+
 for
general n and find that both terms on the right-hand side of
Eq. �34� have factors that diverge as 1 /
3, 1 /
2, and 1 /
. If
we expand both terms in small values of 
, we find that these
divergences cancel, leaving the finite result

lim
z→n

T�z;n� = lim

→0

T�n + 
;n� = T�n� =
�2

16n2�1

3
−

1

2n2�2� ,

�35�

which when inserted into Eq. �32� reproduces the right-hand
side of Eq. �16�.

Many of the other sum rules discussed in Sec. II, such as
those that require derivatives of the potential energy func-
tion, Eqs. �17b� and �17c�, are not well-defined for the infi-
nite square well �or the single �-function in Sec. IV� due to
the singular nature of the potential energy function. Although
the matrix elements �n 	eiqx 	k� required for the Bethe sum
rule in Eq. �5� are easily obtained in closed form, the sum-
mation methods discussed here are not immediately appli-
cable.

We can now use identical methods to evaluate the second-
order shift of the energy levels of the infinite square well
with the addition of a linear potential, V��x�=Fx, namely the
Stark effect. In our choice of geometry the infinite square
well potential is not symmetric, and the first-order energy
shift is nonvanishing and is given by

En
�1� = �n	Fx	n� =

aF

2
. �36�

The second-order shift has been evaluated by Mavromatis for
the ground state30 and extended to a general state31,32 by
using variations on the Dalgarno-Lewis method.33 If we ex-
plicitly write the standard expression for the second-order
energy shift, we have

En
�2� = �

k�n

	�n	Fx	k�	2

�En
�0� − Ek

�0��
= − �F22ma2

�2 �
��8na

�2 �2

�
k

k2

�k2 − n2�5 , �37�

which is formally identical to the type of summations dis-
cussed here. By using either MATHEMATICA or the results of
Appendix A, we find that the sum �for n even or odd� is
given by

�
k

k2

�k2 − n2�5 =
15�2n − �4n3

3072n7 , �38�

so that

En
�2� = − F2�ma4

�2 ��15 − �n��2

24�2n4 � . �39�

The overall n-dependent form agrees with the results of
Mavromatis,30–32 who considered the symmetric infinite well
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for which the first-order correction vanishes. Equation �39� is
interesting in itself because the second-order shift for the
ground state is negative �as it must be, because all states
contributing to Eq. �37� are higher in energy�, but for n=2
and higher, the shift changes sign. This change of sign is in
contrast to the behavior of the harmonic oscillator, where the
second-order shift is always negative, independent of quan-
tum number.

IV. THE SINGLE �-FUNCTION POTENTIAL

Another popular model system in which to investigate
sum rule and perturbation theory results is the single �attrac-
tive� �-function potential defined by

V��x� = − g��x� . �40�

The use of �-function potentials as soluble models of poten-
tial barriers or wells has a long history in quantum mechan-
ics, going back at least to Kronig and Penney,34 who consid-
ered a series of equidistant rectangular barriers and then took
the limit where the width of these barriers is made infinitely
small and their height V0 infinitely large, while not using the
�-function notation.

Morse and Feshbach35 explicitly considered the form in
Eq. �40�, and used the correct �dis�continuity condition on
the energy eigenfunction at the origin,

���0+� − ���0−� = −
2mg

�2 ��0� . �41�

They cited this model as being useful in the study of nuclear
forces and discussed the single bound state as well as scat-
tering solutions. Frost36 considered single and multiple at-
tractive �-function potentials as models of hydrogenlike at-
oms, the hydrogen moleculeion, and more complex systems.
He was perhaps the first to explicitly comment on the simi-
larities of the energy eigenvalue and eigenfunction for the
single bound state of this system to the ground state of the
Coulomb problem. Since then, single and multiple �-function
potentials have been widely used in model calculations in the
pedagogical and research literature.37

Compared to the two other most widely used simple 1D
models, the infinite well and harmonic oscillator, the
�-function potential has the advantage that it has both bound
and continuum solutions, as does the Coulomb potential, and
so it presents new features compared to purely discrete spec-
tra.

The single bound �E�0� state for the potential in Eq. �40�
is given by

�0�x� = �K0e−K0	x	, �42�

where K0=mg /�2. The corresponding bound state energy ei-
genvalue is

E0 = −
mg2

2�2 = −
�2K0

2

2m
. �43�

Comparisons to the ground state of the hydrogen atom can
be made if we write the Coulomb potential as Vc�r�=−g /r
and let a0=1 /K0 in Eqs. �42� and �43�. Not only does the
form of the ground-state energy in Eq. �43� match that of the
Coulomb potential, but the form of the energy eigenfunction
in Eq. �42� does as well.

For use in confirming the closure relations in Eq. �8�, we
find that for the ground-state energy eigenfunction

�0	x2	0� =
1

2K0
2 . �44�

The E�0 continuum states can be classified by their parity
and are given by

�k
�−��x� =

1
��

sin�kx� �45a�

�k
�+��x� =

1

���k2 + K0
2�

�K0 sin�k	x	� − k cos�kx�� , �45b�

both of which have the same free-particle energy Ek
=�2k2 /2m. The combination of the single bound state in Eq.
�42� and the continuum states in Eq. �45� has been shown to
form a complete set of states.38 The effect of the continuum
states on a simple perturbation theory calculation has also
been demonstrated by Kiang.39

We will consider here only the 	n�= 	0� case for the various
sum rules, as the others using purely continuum states do not
converge. Because of the symmetry of the system, parity
arguments dictate that the only nonzero dipole matrix ele-
ments connecting the single ground state to the continuum
will arise from the �k

�−��x� states. We find that

�0	x	k�−�� = �
−�

+�

��K0e−K0	x	�x� 1
��

sin�kx��dx

= 4�K0
3

�

k

�K0
2 + k2�2 . �46�

The energy differences are given by

Ek − E0 =
�2

2m
�k2 + K0

2� , �47�

and we note the similarities in form between these two ex-
pressions and the corresponding results for the infinite square
well in Eqs. �20� and �21b�.

The dipole matrix element closure relation in Eq. �8� be-
comes

�
k

	�0	x	k�−��	2 = �16K0
3

�
��

0

� k2

�k2 + K0
2�4dk =

1

2K0
2

= �0	x2	0� . �48�

The integral can be done by standard methods, and agrees
with the value in Eq. �44�.

The left-hand side of the Thomas-Reiche-Kuhn sum rule
in Eq. �3� gives

�
0

�

�Ek − E0�	�0	x	k�−��	2dk

=
�2

2m
�16K0

3

�
��

0

+� k2

�k2 + K0
2�3dk =

�2

2m
, �49�

as expected. Note the similarity in form of these integral
expressions to the summation results for the infinite well in
Eqs. �28� and �23�.
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To confirm the monopole sum rule in Eq. �16�, we require
the off-diagonal matrix elements of x2 for which only the
even continuum states in Eq. �45b� contribute, giving

�0	x2	k�+�� = 8� K0
3

��k2 + K0
2�

k

�k2 + K0
2�2 . �50�

We find that

�
k

�Ek − E0�	�0	x2	k�+��	2

= � �2

2m
��64K0

3

�
��

0

� k2

�k2 + K0
2�4dk =

�2

mK0
2 . �51�

Note that factors of �k2+K0
2� from the energy difference and

the energy eigenfunction normalization in the numerator and
denominator, respectively, cancel.

The Stark effect for the single �-function potential has
been analyzed using exact results for the Airy function
solutions,40,41 as well as the Dalgarno-Lewis method.42 If we
use the dipole matrix elements in Eq. �46�, we can evaluate
the second-order energy shift directly, using the same kinds
of straightforward integrals encountered so far. We find that

E0
�2� = �

k

	�0	Fx	k�−��	2

�E0
�0� − Ek

�0��
�52a�

=−
2mF2

�2 �16K0
3

�
��

0

� � 1

�k2 + K0
2� k2

�k2 + K0
2�4dk ,

�52b�

which agrees with the results of Refs. 40–42, when put into
this notation. We note that the entire contribution of the Stark
shift to the ground-state energy in this case comes from the
continuum states. This result is one of the few examples of
the explicit evaluation of the contribution of the continuum
terms.

We recall that, for the hydrogen atom ground state, the
total second-order shift can be written in the form43

E0
�2��H-atom� = −

9

4
�F2a0

3

g
� . �53�

This result comes from summing the contributions of both
the bound states and continuum states. Ruffa has evaluated
the continuum contribution to Eq. �53� in terms of a single
integral and found a net contribution of 0.4184 to the total
9 /4=2.25 value of the prefactor.44 We compare the second-
order Stark result in Eq. �52b�, namely 5 /8=0.625, to that
partial contribution, and note that the continuum plays a
slightly more important role in the single delta function case
because there is only one bound state.

The Bethe sum rule is given by

B = �
k

�Ek − E0�	�0	eiqx	k�	2 =
�2q2

2m
. �54�

In this case there are two contributions to the left-hand side
coming from the even �e� or odd �o� continuum states,
namely

B = Be + Bo = �
0

�

�Ek − E0�	�0	cos�qx�	k�+��	2dk �55a�

+ �
0

�

�Ek − E0�	�0	sin�qx�	k�−��	2dk . �55b�

We consider each term separately. The first matrix element of
interest is

Io = �0	sin�qx�	k�−�� =�4K0

�
�

0

�

e−K0x sin�qx�sin�kx�dx

�56a�

=�4K0

�
� 2kqK0

��k + q�2 + K0
2���k − q�2 + K0

2�� , �56b�

where we have used the symmetry of the energy eigenfunc-
tions to evaluate the integral over positive values of x only.
Because Ek−E0=�2�k2+K0

2� /2m, we find

Bo =
�2q2

2m
�16K0

3

�
��

0

� k2�k2 + K0
2�

��k + q�2 + K0
2�2��k − q�2 + K0

2�2dk .

�57�

The use of an integrated mathematics package returns the
correct value for the integral if we correctly interpret the
many cautionary restrictions on the values of K0 and q. How-
ever, given the complicated nature of the intermediate results
coming from such programs, it is important to be able to
check the expressions by hand. In this case the evaluation
involves extending the integral over the entire real line �be-
cause the integrand is an even function of k� and then using
contour integration methods �see Appendix B for details�.
The result is

Bo = ��2q2

2m
��K0

2 + q2/2
K0

2 + q2 � . �58�

For the even case we require the matrix element

Ie = �0	cos�qx�	k�+�� =� 4K0

��K0
2 + k2��0

�

e−K0x cos�qx�

��K0 sin�kx� − k cos�kx��dx �59a�

=� 4K0

��K0
2 + k2�� − 2kK0q2

��k + q�2 + K0
2���k − q�2 + K0

2�� .

�59b�

The even contribution to the sum rule becomes
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Be = �
0

�

�Ek − E0�	�0	cos�qx�	k�+��	2dk �60a�

=��2q2

2m
�

��8K0
3q2

�
��

−�

+� k2

��k + q�2 + K0
2�2��k − q�2 + K0

2�2dk .

�60b�

The integral can again be done with similar contour methods,
giving the result

Be = ��2q2

2m
�� q2/2

K0
2 + q2 , �61�

which can be combined with Eq. �58� to give

B = Bo + Be =
�2q2

2m
, �62�

as expected.

V. CONCLUSIONS AND DISCUSSION

We have presented an array of familiar and not so familiar
one-dimensional sum rules, several of which have been use-
ful in the development of many fields of physics. By using
two standard model systems as testbeds, we have illustrated
the diverse ways in which such sum rules are confirmed,
emphasizing the different techniques �infinite summation
tricks and contour integration methods�. Although the evalu-
ation of the necessary sums and integrals can be simplified
by the use of software, we have provided the details neces-
sary to demonstrate the same results.

We have also noted the similarities of some of the expres-
sions that arise for the same sum rules in the infinite square
well and single �-potential cases. Despite the qualitatively
different physical behavior of the two systems, they both
begin with free-particle solutions. The connections between
these two model systems are seldom stressed, but appear
very natural in the sum rule calculations.

APPENDIX A: INFINITE SUMS FOR THE SQUARE
WELL PROBLEM

Many of the sum rule and second-order perturbation
theory results in Sec. III for the infinite square well involve
the evaluation of infinite sums of the form

Sp
�+��z� = �

even k

1

�k2 − z2�p �A1�

and

Sp
�−��z� = �

odd k

1

�k2 − z2�p . �A2�

Both expressions are eventually evaluated using integer val-
ues of z=n, with n odd and even, respectively, so no diver-
gences occur. Although software can evaluate such sums, it
is important for some students and many instructors to be
able to derive them from scratch. To that end we provide a
brief, but self-contained and complete review of the math-
ematical tools necessary for their derivation.

We begin by considering the general expression

Sp�z� � �
k=1

�
1

�k2 − z2�p , �A3�

where the sum is over all positive integer values of k. The
basic result we require is for p=1, namely

S1�z� = �
k=1

�
1

�k2 − z2�
=

1

2z2 −
� cot��z�

2z
, �A4�

which appears, for example, in Ref. 45. This standard result
can be derived at a more fundamental level from a Fourier
series expansion46 by evaluating the Fourier components of
the expansion

cos�zx� =
a0

2
+ �

n=1

�

�an cos�nx� + bn sin�nx�� , �A5�

over the interval �−� , +��; note that here z is considered a
constant. The Fourier coefficients can be evaluated using
standard integrals, and we obtain

cos�zx� =
sin�z��

z�
− �

n=1

� �2z sin��z�cos�n��
��n2 − z2� �cos�nx� ,

�A6�

because bn=0 by symmetry. If we specialize to x=� and use
the fact that cos2�n��=1, we find

� cot��z� =
1

z
− 2z�

n=1

�
1

�n2 − z2�
. �A7�

We note that this partial fraction expansion of cot��z� cor-
rectly encodes the information on the divergences of the
function at all integer �positive, negative, and zero� values of
z. We rewrite Eq. �A7� and find that

S1�z� = �
n=1

�
1

�n2 − z2�
=

1

2z
�1

z
− � cot��z��

=
1

2z2 −
� cot��z�

2z
, �A8�

confirming Eq. �A4�. Such sums are useful in that they can
be used to evaluate quantities such as the Riemann zeta func-
tion, defined by

��s� � �
n=1

�
1

ns , �A9�

giving

��2� = S1�z = 0� = �
n=1

�
1

n2 =
�2

6
, �A10�

as the z→0 limit of Eq. �A8�. �Such results can be directly
related to integrals that appear frequently in the evaluation of
quantities related to blackbody radiation47 and can therefore
be reinforced through such examples.�

If we differentiate the result in Eq. �A8� with respect to z,
we find that
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d

dz
S1�z� = 2z�

k=1

�
1

�k2 − z2�2 = 2zS2�z� , �A11�

so that in general

Sp+1�z� =
1

2z

dSp�z�
dz

, �A12�

thereby generating sums of arbitrarily high power. For ex-
ample, Eq. �A12� gives

S2�z� =
csc2��z��− 2 + 2�2z2 + 2 cos�2�z� + �z sin�2�z��

8z4 ,

�A13�

which implies that ��4�=S2�z=0�=�4 /90.
Because our interest is often in sums restricted to even or

odd integers, we write

S1�z� = �
k=1

�
1

�k2 − z2�
= �

k even

�
1

�k2 − z2�
+ �

k odd

�
1

�k2 − z2�

� S1
�+��z� + S1

�−��z� . �A14�

We note that

S1
�+��z� = �

k even

�
1

�k2 − z2�
= �

l=1

�
1

��2l�2 − z2�
�A15a�

=
1

4�
l=1

�
1

�l2 − �z/2�2�
=

1

4
S1� z

2
� �A15b�

=
1

2z2 −
� cot��z/2�

4z
, �A15c�

which gives

S1
�−��z� = S1�z� − S1

�+��z� =
�

4z
�cot��z

2
� − 2 cot��z��

=
� tan��z/2�

4z
, �A16�

where we have used half-angle formulas in the last step. The
expressions in Eqs. �A15c� and �A16� can be confirmed us-
ing MATHEMATICA.

The sums over higher powers of even/odd values of n
require us to evaluate Sp

�+��x� and Sp
�−��x� in Eq. �A2�, ob-

tained by repeated use of the differentiation trick in Eq.
�A12�. For example, we can obtain results such as

S2
�+��z�

=
csc2��z/2��− 4 + �2z2 + 4 cos��z� + �z sin��z��

16x4

�A17a�

and

S2
�−��z� =

� sec2��z/2���z − sin��z��
16z3 . �A17b�

APPENDIX B: CONTOUR INTEGRALS

The explicit evaluation of the integrals in Eqs. �57� and
�60b� by contour integration can be done by extending the
region of integration over the entire real axis. A contour con-
sisting of a semicircle of radius R can then be used because
the integrands both have simple �double� poles at
z0

�	�= 	q+ iK0 in the upper-half plane. The contribution to
the contour integral over the circular arc vanishes as R→�,
leaving

�
−�

+�

F�k�dk = 2�i�
i

Ri, �B1�

where the residues are given by

Ri =
1

�n − 1�!�� d

dz
�n−1

��z − z0
�i��nF�z���

z→z0
�i�

, �B2�

for z0
�i�=z0

�	� and where n=2 in this case.
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