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Abstract: A fully quantized analysis is presented on the origin of induced magnetic dipole 
(MD) scattering in two-level diatomic molecules. The interaction is driven by dual optical 
fields, E  and *H , and is universally allowed in dielectric optical materials, including 
centrosymmetric media. Leading terms of the interaction are shown to be quadratic and cubic 
with respect to the intensity, predicting an upper limit for the induced magnetic dipole 
scattering intensity ( 2

MD
I m∝ ) that is equal to the electric dipole scattering ( 2

ED
I p∝ ). The 

optical dynamics proceed by first establishing an electric polarization in the system. Then the 
magnetic field exerts torque on the orbital angular momentum of the excited state, mediating 
an exchange of orbital and rotational angular momenta that enhances the magnetic moment. 
The magneto-electric interaction also accounts for second-order, unpolarized scattering from 
high-frequency librations previously ascribed to third-order, all-electric processes. 
©2016 Optical Society of America 

OCIS codes: (190.0190) Nonlinear optics; (190.4410) Nonlinear optics, parametric processes; (190.7110) Ultrafast 
nonlinear optics; (320.7110) Ultrafast nonlinear optics; (350.3618) Left-handed materials. 
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1. Introduction 

New methods of attaining high-frequency magnetism are of relevance to many fields, 
including metamaterials, spintronics, quantum information, and data storage. In recent years 
novel applications of electromagnetism have emerged from the search for negative 
permeability in structured materials [1], coherent optical spin control of semiconductor charge 
carriers [2] or luminescent centers [3], and ultrafast switching of magnetic domains [4]. As a 
consequence, any prospect of eliciting magnetic response from natural, unstructured, “non-
magnetic” materials can be expected to accelerate the development of magneto-photonic 
technologies based on magnetic interactions. The realization of strong optical magnetism in 
nominally “non-magnetic” media for example could lead to novel forms of light-by-light 
switching, energy conversion, negative permeability in natural materials or the generation of 
large (oscillatory) magnetic fields without current-carrying coils [5–8]. In this paper, a 
magneto-electric optical process is shown to induce strong magnetization at the molecular 
level [9] through a mechanism that is somewhat reminiscent of the Einstein-de Haas effect 
[10]. However, in the present all-optical interaction, both “internal” and “external” motions of 
constituents of the medium are driven by light. This multi-photon process enhances magnetic 
response by first depositing orbital angular momentum in a molecule and then converting it 
with magneto-optic torque to molecular rotation in such a way that a magnetic moment as 
large as the electric dipole transition moment may be realized. Validation of this theory is 
provided by experimental observations in a companion paper [11]. 

Magneto-electric (M-E) phenomena have been investigated at the macroscopic level in 
solids for some time with technological objectives similar to those mentioned above. M-E 
materials invariably include a magnetic constituent and their applications vary from electric 
power generation via magnetostriction to the use of electric fields to control magnetic 
domains. However M-E effects tend to be relatively slow and weak, even in specially 
engineered materials (ferro-electrics, ferro-magnets, multi-ferroics and the like [12]). The 
limitations relate to the intermediate fields required to mediate an overall M-E response. In 
magnetic materials lacking inversion symmetry, as an example, the application of a magnetic 
field causes strain via magnetostriction and subsequently a voltage can be generated as the 
result of a strain-induced piezoelectric effect. In such situations the internal strain field is an 
intermediary in the M-E effect, causing the voltage to be an indirect, rather than a direct, 
result of applying the magnetic field. 

In this article a magneto-electric mechanism is analyzed that is intense and fast because it 
operates directly at the molecular level to produce a radiant magnetization, *M EHχ= . The 

optical interaction is governed by combined parity-time (P-T) symmetry and can therefore 
take place in centrosymmetric media [9,13]. We focus on the dynamics of a simple, 2-level 
molecular model that produces magnetization by a second-order nonlinear optical process 
driven jointly by the electric and magnetic field components of light. In an earlier publication, 
it was found that no specialized symmetry or material property was necessary to support 
second-order magneto-electric interactions due to parity violation, but that in spinless atoms 
no mechanism existed to enhance induced effects such as magnetization [14]. In atoms, 
magnetic transitions invariably take place at frequencies much smaller than the optical 
frequency, so that resonance driven directly by optical fields is not possible and magnetic 
dipole effects are negligible. In stark contrast to this, it is shown here that very strong 
magnetic dipole effects can take place in molecular media because torque dynamics make 
optical magnetic resonance possible at elevated field strengths. While other nonlinear 
interactions in principle can make finite contributions, electric quadrupole and higher order 
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multipole contributions are ignored throughout this treatment on the basis that they are 
smaller than electric dipole moments by the square of the wavenumber times the particle 
radius, estimated to be 2 5( ) 10ka −< at optical frequencies. 

The present treatment quantizes both internal and external degrees of freedom of the 
molecule as well as the optical electric and magnetic fields, furnishing a closed form solution 
that is not possible in a spinless atomic model. Magnetic torque dynamics are shown to 
provide sufficient enhancement of magnetization to achieve equality between induced electric 
and magnetic moments in the high intensity limit. This result is confirmed experimentally in 
[11], hereafter referred to simply as I. The intensity required to reach maximum 
magnetization (relative to electric polarization) is shown to scale inversely with the 
rotation/libration frequency of the molecule. 

2. Model for molecular ME-magnetization 

The model considered here consists of a homonuclear diatomic molecule (symmetric top) 
with a 1-photon electric dipole (ED) resonance at frequency 0ω  [15]. The quantization axis is 

assumed to lie along x̂ , the axis of the molecule, and is parallel to the electric field. Linearly-
polarized light of frequencyω with a small 1-photon detuning of 0ω ωΔ ≡ −  propagates 

along ẑ . The ground electronic state is taken to be 1
g
+Σ , the excited state 1

uΠ , and orbital 

angular momentum is specified by the eigenvalue of L  and its projection lm  (or Λ) on the 

axis. Uncoupled electronic states are denoted by lLmα , with 1, 2α =  specifying the 

principal quantum number. The basis states support an ED transition from 0L =  to 1L =  
followed by a magnetic dipole (MD) transition from 0lm =  to 1lm = ± . The basis set 

comprises the four states 100 , 210 , 21 1−  and 211 . To simplify the presentation, basis 

state 211 will be omitted from much of the development. This has the benefit of reducing 

the dimensionality of the eigenvalue problem from 4 4× to 3 3× , making an approximate 
analytic solution possible while introducing only a small error in the calculated magnetic 
moment. At the end of the paper, state 211  is reinserted into the basis set to provide 

numerically exact results that achieve quantitative agreement with experimental results in 
companion paper I. 

In our pedagogical 3-state model, molecular rotational states are written oOm  and 

comprise only 00 , 10  and 11  (see Appendix A). The optical field is assumed to be a 

single-mode Fock state n . The molecule-field states therefore form the uncoupled product 

states 1 100 00 n≡ , 2 210 10 1n≡ − , and 3 21 1 11 n≡ − . These are 

eigenstates of the molecule-field Hamiltonian 

 2
0

ˆˆ ˆ ˆ ˆ ˆ ˆ( / 2) / 2 ,mf mol field zH H H O I a aω σ ω + −= + = + +   (2.1) 

with eigenenergies ( 1,2,3)iE i =  defined by ˆ
mf iH i E i= . 2ˆ / 2O I  designates kinetic 

energy of molecular rotation perpendicular to the internuclear axis with moment of inertia I. 
Basis state energies are: 

 0
1 ,

2
E n

ω ω= − +


  (2.2) 

 0
2 1 ( 1) ,

2
E E n

ω ω= + Δ = + −


   (2.3) 
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 0
3 2 .

2
E E nφ φ

ωω ω ω= − Δ + = − + +


     (2.4) 

In Eq. (2.1) above, ˆ zσ  is a Pauli spin operator. â+  and â−  are raising and lowering operators 

of the single mode field respectively. The sign of the first term on the right of Eq. (2.4) 
reflects the fact that state 3 has rotational energy 2 / Iϕω ≡   but no internal electronic 

kinetic energy (i.e. no electronic excitation), consistent with a 2-photon interaction that 
terminates in a rotationally-excited ground state sublevel (as depicted in Fig. 1). 

 

Fig. 1. Energy levels of the molecular model showing the 2-photon transition (solid arrows) 

driven by the optical E and 
*B fields The dashed downward arrow depicts a magnetic de-

excitation channel that becomes an option if the excitation bandwidth exceeds ϕω . 

The rotating-wave approximation (RWA) is made for both the electric and magnetic field 
interactions, consistent with the small 1-photon detuning Δ  together with a small 2-photon 
detuning of the *EB  process ( ϕω ω<< ). A magnetic interaction of the form 

( ) 2
int

ˆ ( / )m
effH O L Bμ= − ⋅ ×   is introduced in order to include torque in the dynamics (see 

Appendix B). In operator form this interaction Hamiltonian is: 

 ( ) ( )
int int int

ˆˆ ˆ ˆ ˆˆ ˆ ˆ( . .) ( ' ' . .).e mH H H g a h c fL O a h cσ + − +
− += + = + + +   (2.5) 

Primes on the orbital ( ˆ ˆ' /L L± ±≡  ) and rotational angular momentum operators 

( ˆ ˆ' /O O± ±≡  ) indicate division by  . The interaction strengths are ( )
0

eg μ ξ≡ −  and 

/efff i cμ ξ≡ − , where ( )
0 0(2 / ) m

eff cμ ω ω μ≡  is the effective magnetic moment; 

0/ 2 Vξ ω ε≡   is the electric field per photon. The full Hamiltonian is 

int
ˆ ˆ ˆ ˆ

mol fieldH H H H= + + , and the corresponding eigenvalue equation is ˆ
DH D E D=  in the 

uncoupled basis, with 

 
3
*

2
*

1

.

2 0

2

0

E f n

H f n E g n

g n E

 
 

=  
 
 



 



 (2.6) 

The secular equation 

 ( ) ( ) 0,Di iH E I D n− =  (2.7) 
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may be solved to determine the “doubly-dressed” eigenstates ( )iD n and their eigenenergies 

DiE . For this purpose we set the secular determinant equal to zero. 

 

3

*
2

*
1

2 0

2 0

0

Di

Di

Di

E E f n

f n E E g n

g n E E

−

− =

−



 



 (2.8) 

Equation (2.8) has the general form 

 3 2 0,y py qy r+ + + =  (2.9) 

where Diy E= , and the coefficients are 

 1 2 3( )p E E E≡ − + +  (2.10) 

 
22 2 2

1 2 2 3 3 1( 4 )q E E E E E E n f n g≡ + + − −   (2.11) 

 
22 2 2

1 2 3 1 3( 4 ).r E E E n f E n g E≡ − + +   (2.12) 

With the additional replacement / 3y x p= + , Eq. (2.9) reduces to 

 3 0,x ax b+ + =  (2.13) 

with new coefficients 

 

2

22 2 2 2
1 2 2 3 3 1 1 2 3

1
(3 )

3
1

( 4 ) ( )
3

a q p

E E E E E E n f n g E E E

= −

= + + − − − + + 

 (2.14) 

 

3

23 2 2 2
1 2 3 1 2 3 1 3

22 2 2
1 2 3 1 2 2 3 3 1

1
(2 27 9 )

27
2

( ) ( 4 )
27
1

( )( 4 )
3

b p r pq

E E E E E E n f E n g E

E E E E E E E E E n f n g

= + −

= + + + − + +

+ + + + + − −

 

 

 (2.15) 

The solutions of Eq. (2.13) are given by 

 
2

2 cos , 0,1, 2
3 3k

a
x k k

πφ = − − = 
 

 (2.16) 

where the phase angle φ  is defined by 

 11 3 3
cos .

3 2

b

a a
φ −  −=   

 
 (2.17) 

Hence the analytic solutions for the doubly-dressed system are 

 1 1 2 3

4 1
2 cos ( )

3 3 3D

a
E E E E

πφ = − − + + + 
 

 (2.18) 
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 2 1 2 3

2 1
2 cos ( )

3 3 3D

a
E E E E

πφ = − − + + + 
 

 (2.19) 

 ( )3 1 2 3

1
2 cos ( )

3 3D

a
E E E Eφ= − + + +  (2.20) 

where the subscripts have been chosen so that 1DE  and 2DE  reduce to the eigenenergies of a 

2-level atom dressed by the electric field alone [16], and 3DE  is the additional eigenenergy 

introduced when the magnetic field is considered. 
Eigenstates ( )iD n  of the system including both the electric and magnetic field couplings 

must satisfy the equation ( ) ( ) 0Di iH E I D n− = . The states are expanded in terms of the 

basis states according to 

 ( )( ) 1 2 3 , i 1,2,3i i i iD n a b c= + + =     (2.21) 

and the coefficients 
i

a ,
i

b , and
i

c must satisfy the standard normalization condition 

 
2 2 2

1 .i i ia b c= + +  (2.22) 

Because of the complexity of the roots, it is most convenient to display solutions of (2.7) in 
terms of the eigenenergies DiE  given in Eqs. (2.18-2.20). The eigenstates then acquire the 

form 

 
2 2

2

3 3

4 2( )1
( ) 1 (1) 2 3 ,

( ) ( )
Di

i
i Di Di

f fE E
D n

g E E E Eg n

    −    = − + +
   Ξ − −     

 


 (2.23) 

where normalization is provided by the dimensionless factor 

 

2 22 2

22

3 3

4 2
1 .

( ) ( )
Di

i
Di Di

f fE E

g E E E Eg n

   −
   Ξ = − + +
   − −   

 


 (2.24) 

In the limit of negligible magnetic coupling ( f 0→ ), the eigenstates in Eq. (2.22) reduce to 
the well-known quasi-eigenstates of an atom dressed by the electric field alone [16]. 

3. Results 

The nonlinear magnetic dipole moment of interest here arises from charge motion that is 
induced by the two fields E  and *H . It can be thought of as motion initiated by the electric 
field that is subsequently deflected by the magnetic field of light. The magnetic moment is 
therefore expected to be proportional to the electric polarization and indeed the two leading 
contributions to the expectation value share this proportionality. Examination of the 
admixtures coupled by arrows in Fig. 2 reveals that the magnetization is one of two nonlinear 
dipoles that form according to standard selection rules among admixed components of the 
eigenstates. One is a nonlinear ED moment (2) (0)zp  that is oriented longitudinally with 

respect to the propagation axis. It lies perpendicular to the quantization axis, and couples the 
ground state admixtures 21 1−  and 100 , as indicated by the curved double-headed arrow 

in Fig. 2. The radiant magnetization is transverse to the propagation axis and couples 210  
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and 21 1− . Its expectation value in terms of the slowly-varying amplitude of the density 

matrix ρ  [17] is 

 
( )( )

( ) ( ) ( )
21 12 31 13 32 23

ˆ ,

( ) . .

m

m m m

m Tr

c c

μ ρ

μ ρ μ ρ μ ρ

=

= + + +



  
 (2.25) 

Since ( )
21 0mμ = , only two contributions to m̂  are non-zero. One is second order, and is 

observable as the y-projection of a 2-photon, magneto-electric moment that couples states 1 
and 3. Such a projection can be implemented experimentally by passing the signal through a 
crossed polarizer. This contribution accounts for the portion of theoretical results in Fig. 3 at 
low input intensities (low photon number). The other is third order and accounts for saturation 
of the magnetization curves at high intensities. Multiple curves are shown in Fig. 3 to 
illustrate the dependence of nonlinear response on rotation frequency in the molecular model. 

 

Fig. 2. Dressed state picture of three dipole moments formed by strong excitation of a 

nominally 2-level molecule during a 2-photon 
*EB process. 

(1) ˆ( )p xω  is the linear ED 

polarization along the quantization axis. 
(2) ˆ(0)p z  and 

(2) ˆ( )m yω  are nonlinear 

rectification and magnetization moments oriented along ẑ  and ŷ  respectively. 

The second-order term in the magnetic moment is the result of simultaneous ED and MD 
transitions which comprise an allowed, nearly resonant 2-photon transition between states 1 
and 3 (see Appendix B). Since the two dipole transition moments that form the associated 2-
photon coherence are orthogonal, they can be measured independently in experiments. The 
measured magnetic moment for example is the ŷ  projection of the second-order, magneto-

electric coherence and radiates at the optical frequency. 

 (2) (2)
13 31ˆ [ ] . .me

ym c cμ ρ= +  (2.26) 

The solution for the off-diagonal density matrix element is 

 
(1) (1)

(2) 12 23
13

13 13

,
V

i

ρρ =
Δ + Γ


  (2.27) 

where 13 1 3( )ω ω ωΔ ≡ − − . The correspondence between density matrix elements and mixing 

coefficients in the dressed state picture is therefore (1) *
12 i ia bρ ↔  and 

(1) ( ) ( ) ( )
23 31 13 13 21

ˆˆ ˆ/ ( ) ' 'me e m
i eff iV i D L O Dμ μ ξμ σ− + +Δ + Γ ↔ . Hence 
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{ }(2) * ( ) ( )
12

* * ( )

* * ( )

( ) * *
12

ˆˆˆ ˆ' ' . .

ˆˆ11 21, 1 ' ' 210 10 . .

2 11 21, 1 21, 1 11 . .

2 ( . .)

e m
i i i eff i

y

m
i i i eff i

m
i i i i eff

e
i i i i

m a b D L O D h c

a b n c L O b n h c

a b b c c c

c a b b c c c

μ ξμ σ

μ

μ

μ

− + +

− +

= +

= − +

= − − +

= +

 (2.28) 

In Eq. (2.28) the effective magnetic moment has been replaced in the last step by ( ) ( )
12

m e
eff cμ μ= . 

This value is twice the upper bound on ( )m
effμ  derivable from Faraday's Law for a single 

component of angular momentum [7]. Because the initial state of the magnetic transition, 
namely 210 , comprises two orbital angular momentum components with no net projection 

of L on the quantization axis, the maximum value for the quantum mechanical magnetic 
moment is twice the classical limit derived in [7]. Note that this upper bound represents the 
upper limit of magnetic enhancement calculated in Appendix B. 

An additional contribution to m̂  arises from third order terms in the expectation value. 

In this case the measured moment is not proportional to a cross-polarized quadrature of a 
mixed moment, but to a magnetic dipole moment ( )mμ  driven by a purely magnetic 

interaction on the transition between states 2 and 3. 

 (3) ( ) (3)
23 32ˆ . .mm c cμ ρ= +  (2.29) 

The solution for the off-diagonal density matrix element in this case is 

 
(1) (2)

(3) 21 13
23

23 23

,
V

i

ρρ =
Δ + Γ


  (2.30) 

where 23 2 3( )ω ω ωΔ ≡ − − . Only a single term contributes to (2.29) since ( )
21 0mμ =  and 

( )
31 0mμ = . The coherence on the right side of Eq. (2.30) is second order (unlike that in Eq. 

(2.27)) and the magnetic moment forms in third order. Making use of the replacements 
(2) *
13 i ia cρ ↔  and (1) ( ) ( ) ( )

21 32 23 23 21 ˆ/ ( ) 2m e m
i eff iV i D Dμ μ ξ μ σ +Δ + Γ ↔  one finds 

 

{ }(3) * ( ) ( )
21

* * ( )

* * ( )

( ) * *
12

ˆ ˆ2 . .

ˆ2 10 210 100 00 . .

2 10 210 210 10 . .

2 ( . .)

e m
i i i eff i y

m
i i i eff i

m
i i i i eff

e
i i i i

m a c D D h c

a c n b a n h c

a b a c c c

c a b a c c c

μ ξ μ σ

μ σ

μ

μ

+

+

= +

= +

= +

= +

 (2.31) 

In the last step of Eq. (2.31) the effective magnetic moment has been replaced by the upper 
bound ( ) ( )

12
m e

eff cμ μ= , as before. The total magnetic moment is given by the incoherent addition 

of Eqs. (2.28) and (2.31). 

 ( )
1/2

3 2( ) * * * *
12

1

ˆ ( ) 2 . . . . .e
j j j j j j j j

j

m c a b a c c c a b b c c cω μ
=

 
= + + + 

 
  (2.32) 
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Fig. 3. Squared values of the total magnetic moment and the first order electric dipole moment 
versus the number of incident photons in the (a) 3-state model and (b) the 4-state model. In 

both figures separate curves are shown for 
2

m̂ with rotational frequencies (left to right) of 

7 5 3
, ,0/ 10 10 10ϕω ω − − −= . 

Results for the magnitude of the induced magnetic moment given by Eq. (2.32) are 
compared with that of the linear electric dipole moment (1) ( )p ω  in the curves of Fig. 3(a). 

The electric dipole transition moment was arbitrarily chosen to be that of the principal 
resonance of hydrogen. Figure 3(a) shows the results for the analytic 3-state model of Section 
2. Figure 3(b) presents results for the 4-state model, with basis state 211  included. A strong 

dependence of ˆ ( )m ω  on rotational frequency ϕω  is apparent in both plots. Results in Fig. 

3(b) are numerically exact, and are very similar to those in Fig. 3(a), differing only by an 

increase in the predicted ˆ ( )m ω  values by a factor of 2  or roughly 30% due to the fourth 

basis state. The right side of the plots in Fig. 2 has been chosen to end at the ionization regime 
where even the linear polarization of the system saturates and numerical instabilities are 
encountered. 

4. Conclusions 

The general behavior of induced magnetic moments in this model may be described as 
follows. At low intensities in Figs. 3(a) and 3(b) the square of the nonlinear magnetic moment 
is quadratic with respect to input intensity. At higher input intensities the calculation of 2m , 
which is proportional to magnetic scattering intensity, manifests a cubic dependence over a 
short range, and the curve for m  saturates where it intersects that of p . In the saturation 

regime, the magnetization maintains a linear dependence on intensity, in strict proportion to 
the (linear) electric polarization. Both the ED and MD moments cease to increase when the 
ionization threshold is approached (on the far right of Fig. 3). 

The present theoretical approach does not require uncommon or specialized ground state 
structure, but applies to simple molecules with symmetric ground states in which there is 
initially no angular momentum. From the results one may conclude that magnetic moments 
driven jointly by the electric and magnetic fields of light can grow to equal the electric dipole 
moment in molecular systems. The intensity satI at which saturation occurs depends on 

structural aspects of the medium that affect the 2-photon detuning, such as the libration 
frequency of the system. Based on Fig. 3, satI is proportional to rotation/libration frequency 

ϕω . In molecular liquids the rotation frequency is / Iϕω =  , so an inverse dependence of the 

induced magnetic moment on moment of inertia is expected. In solids there is no well-defined 
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moment of inertia at the molecular level. Nevertheless librational frequencies associated with 
localized optical centers are well-defined and may again be represented by ϕω . Hence, the 

intensity requirement for saturated magnetization can be expected to drop in proportion to 
such characteristic frequencies in both liquids and solids. Other structural and chemical 
aspects of the medium, such as orientational damping and electron delocalization, doubtless 
affect the susceptibility of magneto-electric magnetization but will require further 
investigation. 

Appendix A: Molecular rotational states 

The rotational states involved in the transfer of orbital to rotational angular momentum in 
magneto-electric interactions may be established by arguments based on parity of the levels 
and the magnetic interaction Hamiltonian derived in Appendix B. The following analysis 
applies to a rigid rotor model of the molecular system for which the magnetic interaction 
Hamiltonian is 

 ( ) '
int

ˆˆ ˆ ˆ' . .mH fL O a h c+
− += +  (A.1) 

This interaction is rotationally invariant, so it commutes with the total angular momentum, 

which is ˆˆ ˆJ L O= +  if spin is ignored (Hund’s case b [18]). That is, 

 ( )
int

ˆ ˆ[ , ] 0mH J =  (A.2) 

As a consequence of Eq. (A.2), total angular momentum is conserved in the interaction. Also 
the z-component of total angular momentum commutes with the Hamiltonian. 

 ( )
int

ˆ ˆ[ , ] 0.m
zH J =  (A.3) 

Forming a matrix element with the commutator in Eq. (A.3), one finds 

 ( ) ( )
int int

ˆ ˆ ˆ' ' ' ' [ , ] ( ') ' ' ' ' 0.m m
zl O j m H J lOjm m m l O j m H lOjm= − =  (A.4) 

Thus the matrix element ( )
int

ˆ' ' ' ' ml O j m H lOjm  vanishes unless 'm m= . Since 

ˆˆ ˆ
z z zJ L O= + , and the eigenstates of ˆ

zJ  are also eigenstates of ˆ
zL  and ˆ

zO , the result 'm m=  

implies that initial and final projections of the total angular momentum must be equal. 

 ' ' .l o l om m m m+ = +  (A.5) 

Next we note that possible values of total angular momentum for a given value of l  must 

fall in the range ,..., 1,j l O l O l O= − + − + . Conversely, the possible values of O for a given 

value of j  are ,..., 1,O j l j l j l= − + − + . Since 1L J= = in the 210  excited state, which 

is the electronic state from which the magnetic transition is initiated, the only allowed values 
of O  are 0,1,2O = . The parity of this state is determined by the parity of the rotational 

wavefunction [15]. Because 0lm =  (denoted 0Λ = in [15]) the parity in question is positive 

or negative according as O  is even or odd. However the parity of the excited state must be 
negative in order to satisfy the electric dipole selection rule for an electric dipole (ED) 
transition from the 1

g
+Σ  ground state, which has positive parity. The rule for an ED transition 

is that the parity must change and m  must not. The ground state rotational state 

is 00oOm =  by assumption, but in the excited state the rotational quantum number O  

must have one of the values 0,1,2O =  and be odd. Hence 1O =  in the electronic excited 
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state of our model and the complete rotational wavefunction in the upper state is therefore 
10oOm = . 

Next, note that for a magnetic dipole (MD) transition the parity of the initial and final 
states must be the same. This imposes the requirement that final and initial rotational angular 
momenta be the same, or 'O O= . Now, to find the projection of rotational angular 

momentum on the quantization axis in the final state, note that the operator ˆ 'L −  in 
( )
int

ˆ mH lowers the projection of orbital angular momentum without changing l . That is, 

' 1lm = − . Since the sum of upper state projections of angular momentum on the quantization 

axis yield 0l om m+ = , Eq. (A.5) requires that ' ' 0l om m+ = , or ' 1om = . Thus the final 

orbital state is ', ' 1, 1ll m = −  and the final rotational state is ', ' 1,1oO m = . These angular 

momentum states are exactly those expected from the ladder operators in the magnetic 

Hamiltonian, namely ˆˆ ' ' 210 10 2 21 1 11L O− + = − . 

Appendix B: Magnetic interaction Hamiltonian 

Eigenstates of light carry an amount of intrinsic angular momentum equal to   per photon. 
Consequently in spinless atoms, where any induced magnetic moment ( / 2 )e m Lμ =  depends 

on orbital angular momentum resulting from optical interactions, the magnetic response is 
invariably small, yielding moments on the order of ( )

0 ( / 2 )m
ee mμ ≡  . In molecules however, 

orbital (internal) and rotational (external) angular momenta are coupled in a fashion 
reminiscent of the Einstein-de Haas effect [10], and this provides a mechanism for the 
enhancement of magnetic moments ( ( )

0
m

effμ μ>> ) as shown here. 

To derive the full interaction Hamiltonian of Eq. (2.5), we consider it to be the sum of 
electric dipole (ED) and magnetic dipole (MD) interactions, with the effect of magnetic 
torque included in the magnetic transition in the excited state. Because the model has no 
ground state sub-levels, the interaction can only be initiated by an ED interaction from the 
true ground state. Then the kinematic effect of magnetic torque is to rotate the axis of orbital 
motion during the MD transition so as to leave the molecule in a pure rotational state. As a 
result, it is convenient to derive the torque interaction by starting from the rotational energy of 
the final state and connect it to the electronically excited state using components of the total 
angular momentum that can transfer momentum between internal and external coordinates. 

The kinetic energy of molecular rotation is given by 

 21 1
2 2 ,H I Oω ω= = ⋅  (B.1) 

where ω  is the angular frequency about an axis perpendicular to the internuclear axis. I is 

the moment of inertia, and O Iω=  is the angular momentum vector of the rigid rotor. If the 

rotational angular momentum O  is due to torque T  exerted by a magnetic field on internal 

angular momentum L , it accumulates with time classically according to 

 .
0

t dO
O dt

dt

Δ  =   
 

 (B.2) 

Also, if total angular momentum J L O= +  is conserved, its time derivative is zero. Thus 

 / ( ) / 0,dJ dt d L O dt= + =  (B.3) 

and 
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 .
0

t dL
O dt

dt

Δ  = −   
 

 (B.4) 

The equation of motion for rotations is /T dL dt=  in a fixed reference frame. Magnetic 

torque is given by T m B= × , where m  is the magnetic moment due to circulation of charge 
at the optical frequency. (Although there are no definite orbits in quantum mechanics, there is 
still circulation of the electron about the internuclear axis when 0L ≠ .) The expression for O  
becomes 

 .( )
0

t
O m B dt

Δ
= − ×  (B.5) 

For molecules, constants of the motion and the moments determined by them are referenced 
to the molecular center-of-mass (COM). We may therefore specify electron position as 

R r h= +  in cylindrical coordinates ( , , )r hϕ  that are centered on an origin halfway between 

the nuclei of our diatomic, homonuclear rigid rotor. Prior to the application of magnetic 
torque, charge circulation responsible for L  in the excited state is then purely azimuthal, as 
depicted in Fig. 4 and the axis of the molecule is stationary. The orbital momentum 

( / )eL R m dR dt= ×  contains four terms, three of which are then zero. em  is the mass of the 

electron. The terms ( / )er m dh dt×  and ( / )eh m dh dt×  are both zero because the axial 

component of R  is time-invariant in a stationary molecule. Also ( / )eh m dr dt×  does not 

contribute to the classical angular momentum since the product is directed radially along r  
and rotates at frequency 0ω , meaning it is not a constant of the motion in a diatomic molecule 

[15]. Hence, 

 ,e

dr
L m r

dt
= ×  (B.6) 

and its magnitude is 

 2
,0eL m r ω=  (B.7) 

since 0 ˆ /dr dtω ≡  is the classical resonant frequency of the molecule. 

Next, the effect of the optical magnetic field is considered, in order to estimate the 
maximum enhancement of magnetic response that could result from molecular torque 
dynamics. The axis of initial orbital angular momentum is rotated by magnetic torque so that 
the angular momentum of the electron is transferred to an orientation perpendicular to the 
molecular axis. To conserve total angular momentum and energy, the molecule must undergo 
end-over-end rotations following the torque interaction, in an orbit about the center-of-mass 
coordinate that has a much larger radius than the initial one. 
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Fig. 4. Orbital angular momentum L of an electron about the internuclear axis of a diatomic 
molecule, visualized in cylindrical coordinates referenced to the center of mass (COM) and 
fixed in the molecule. No magnetic torque has been exerted on the system. Angular momentum 
is determined by coordinate r of the electron. 

When the magnetic field exerts torque on the orbital angular momentum of the molecule, 
charge motion around the molecular axis ceases to be a constant of the motion. Motion is 
rotated into a plane orthogonal to the initial one, as shown in Fig. 5. Referring to the diagram, 
the rotational angular momentum can be expressed as ( / )eO R m dR dt= × , reducing to 

ˆ ˆ( / )eO m hh h dh dt≅ ×  for a rigid rotor ( / 0dh dt = ) in the limit h r>> . Energy is conserved 

while orbital kinetic energy is converted to motion in the plane of Fig. 5 via torque. So initial 

and final electron velocities are the same ( / /dr dt dh dt= ), although their orbital radii r  and 
h  are different. The nuclei are also assumed to follow the electron motion adiabatically. 
Consistent with this and Fig. 1, the interaction therefore concludes with the molecule 

executing rotations (librations) at the rotational frequency ˆ /dh dtϕω ≡ . Energy conservation 

requires that 0r h ϕω ω=  and the final rotational angular momentum of the system is 

approximately given by 

 2
,0 0 0ˆ ˆe eO m h r m hr rϕω ω≅ =  (B.8) 

which has a magnitude of 

 .0eO m hrω=  (B.9) 

In Eq. (B.8) carets denote unit vectors. So 0
ˆ ˆr̂ L B= ×  is a unit vector perpendicular to the 

internuclear axis that determines the direction of O . 

 

Fig. 5. After the application of magnetic torque, electron motion is in a plane orthogonal to that 
in Fig. 4. It consists of rotation about an axis perpendicular to the internuclear axis, normal to 
the plane of the drawing. Angular momentum is determined chiefly by coordinate h of the 

electron since we assume h r>> . 
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The distance h  is one half the internuclear separation, whereas r is much smaller; it is an 
average radius of the excited state orbital with respect to the molecular axis ( )h r>> . The 

relative magnitudes of O and L  for the same electron velocity are therefore related by an 
enhancement factor η  obtained by combining Eqs. (B.7) and (B.9). 

 / / .O L h rη ≡ ≅  (B.10) 

An immediate consequence of this result is that following a full rotation of the axis through 
ninety degrees, the magnetic moment in Eq. (B.5) is enhanced. 

 
2 e

eL
m

m
η
 

=  
 

 (B.11) 

Thus the rotational angular momentum is given by the integral 

 ( ) .
20 e

t e
O L B dt

m

ηΔ  
= − ×  

 
 (B.12) 

In a classical setting the initial angular momentum is time dependent, since it is proportional 

to electron velocity which in turn is driven by the electric field *
0 0

1 ( )2
i t i tE E e E eω ω−= + . We 

assume the field is real ( *
0 0E E= ) and that L  and B  have similar forms. Then, the slowly-

varying amplitude of the rotational angular momentum in Eq. (B.12) yields 

 
*

0 02
.

2 4e

L Be
O t

m

η    ×= − Δ  
  

 (B.13) 

By substituting this result for O  into the kinetic energy we obtain 

 
* *

0 0 0 0
ˆ

1 1
,

2 2 2 2 2O
e

L B L Be
H O t t

I m I

η μ   × ×= − ⋅ Δ = − ⋅ Δ   
   

 (B.14) 

where the rotational magnetic moment is defined to be ˆ '
2O

e

e
O

m
μ η  

≡  
 


 and ' /O O≡  . 

The momentum transfer time interval tΔ  may be estimated from Eq. (B.14) by setting the 
time-integrated torque equal to the orbital angular momentum available for transfer, which is 
  (for an 1L =  excited state). That is, 

 
*

0 0 ˆ.
2 2e

L Be
L t O

m

   ×Δ = Δ =  
  

  (B.15) 

Setting 0L =   also, and solving for tΔ , one finds 

 
*
0

,
4 4e

c

m
t

eB ω
Δ = =  (B.16) 

where 0 /c eeB mω ≡ . Using these results for the inter-conversion of components of the total 

angular momentum, it is possible to connect the rotation of a molecule to its excited state 
orbital motion via a torque-mediated transition embodied in the interaction Hamiltonian 
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 ˆint

2
( ' ) ' ( ' ).effO

c

H L B O L Bϕω
μ μ

ω
 

= − ⋅ × = − ⋅ × 
 

 (B.17) 

The effective magnetic moment ( )
0(2 / ) m

eff cϕμ η ω ω μ≡ in Eq. (B.17) incorporates the relation 

between rotation frequency and moment of inertia ( / Iϕω ≡  ), as well as a reference 

moment associated with the minimum possible quantized value of angular momentum, 
namely ( )

0 ( / 2 )m
ee mμ ≡  . As in the body of this paper, primes on angular momentum 

operators indicate division by  . On the basis of Eq. (B.8) the enhancement factor can also 
be expressed in terms of measurable, characteristic frequencies of the system as 

0/ /h r ϕη ω ω= = . As a consequence, the effective magnetic moment takes on the 

particularly simple form of 

 ( )0
.0

2 m
eff

c

ωμ μ
ω

 
=  
 

 (B.18) 

Because the optical frequency is much larger than the cyclotron frequency at low to moderate 
intensities, the estimated ratio of the effective to the reference magnetic moment exceeds the 
inverse fine structure constant ( ) 1

0( / )m
effμ μ α −>> , placing ED and MD moments on a par. 

Note that Eq. (B.18) appears to suggest that progressively smaller cyclotron frequencies, or 
weaker magnetic field amplitudes 0B , yield arbitrarily large magnetic moments. However the 

torque interaction must take place in a time less than the excited state decay time radτ . Hence, 

based on Eq. (B.16), 0B  is restricted to the range 0 4 /e radB m eτ≥ . 

Next, correspondence is applied to write the Hamiltonian (B.17) in operator form. B  is 
taken to lie along ŷ , E  along the quantization axis x̂ , parallel to the molecular axis. 

 ' 'ˆ ˆˆ' x zL y L z L x× = −  (B.19) 

 ' ' ' ' ' ' 'ˆ ˆˆ' ( ' ) ( ) ( )x z z x x zO L By O L z L x B O L O L B⋅ × = ⋅ − = −  (B.20) 

Since the component of angular momentum along the quantization axis '
xL  contributes only 

diagonal matrix elements, it may be omitted from the interaction Hamiltonian. Hence 

 ' '
int

ˆˆ ˆ ˆ,eff x zH O L Bμ= −  (B.21) 

where carets indicate operators. Note that '̂
zL  is a transverse component of ˆ 'L  while 'ˆ

xO  is a 

transverse component of ˆ 'O , in view of the orthogonality of L  and O . Consequently 

 ' ' '1
2

ˆ ˆ ˆ( )z iL L L+ −= −  (B.22) 

 ' ' '1
2

ˆ ˆ ˆ( )x iO O O+ −= −  (B.23) 

Taken together with the operator form of the magnetic field, these expressions yield 

 ' ' ' '
int

1 1ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) / ,2 2effH O O L L i a a ci iμ ξ+ −
+ − + −= − − − −  (B.24) 

where 0/ 2 Vξ ω ε≡   is the electric field per photon. The secular form of Eq. (B.24) is 

 ' ' ' '
int

ˆ ˆˆ ˆ ˆˆ ˆ( ) /effH i O L a O L a cμ ξ+ −
+ − − += − −  (B.25) 
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or 

 ' '
int

ˆˆ ˆ ˆ . .,H fL O a h c+
− += +  (B.26) 

when the magnetic interaction Hamiltonian is expressed in terms of an enhanced coupling 
energy /efff i cμ ξ≡ − . 
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